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Abstract

Arthur von Hippel, a pioneer in the emergence of modern materials science, had a
great goal: “the molecular designing of materials and devices.” In this article, | describe
how computational materials theory has evolved over the last half century, helping to
transform that goal from dream to reality. | start with two great puzzles of the 1950s: why
band theory and the nearly free electron picture work. These were resolved by Landau’s
quasiparticle theory and by pseudopotential theory, respectively. Together with the
creation and development of density functional theory, key methodological advances,
and the rapid evolution of computer hardware and software, these two insights have
resulted in the achievement of the quantitative prediction of the structures and properties
of complex materials. Bandgap engineering and design of multilayer multifunctional
materials are given as examples of “molecular design.”
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Introduction

Arthur von Hippel’s life and career
spanned the entire 20th century, during
which materials science emerged as a sep-
arate discipline having active interfaces
with physics, chemistry, biology, and their
applied and engineering correlates. In this
issue of MRS Bulletin, we celebrate his
many contributions to materials science
and, in this article, I focus on one aspect of
his prescient vision of how materials re-
search can best be done.

Before World War II, von Hippel had al-
ready established his Laboratory for Insu-
lation Research (LIR) at MIT, which,
informed by his wartime experience in
the power of interdisciplinary research,
evolved into a prototypical materials
research center. In the postwar LIR, a
multidisciplinary effort involving both
experiment and theory was brought to
bear on Arthur von Hippel's great goal,
“the molecular designing of materials and
devices.”!

Here, I describe how materials theory—
and in particular computational materials
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theory—has evolved over the intervening
years, helping to transform that goal from
dream to reality (see Table I). It was a goal
of the materials science field that I
dreamed of myself, later than but inde-
pendently of von Hippel.

I arrived at the University of Chicago in
the fall of 1952, fresh from completing my
PhD at the University of California, Berke-
ley, in solid-state theory under Charles
Kittel. My position at Chicago was in-
structor in the Physics Department and
the Institute for the Study of Metals (now
the Franck Institute), another of the proto-
typical postwar interdisciplinary mate-
rials research centers. Soon after, I was
called into the office of Cyril S. Smith, the
founding director of the institute. He
opened the discussion by asking (and I
paraphrase), “What good are solid-state
theorists?” Disconcerted, 1 stammered
(and again I paraphrase), “We shall one
day be able to design materials from first
principles,” enunciating a theorist’s ver-
sion of the great dream.

Smith was polite enough to display his
skepticism nonverbally, and I did not pre-
dict when it might come to pass. It has
come to pass now, half a century later, and
is rapidly growing in reach and precision.
In the following, I shall describe how it
came about, starting with two of the great
puzzles of the 1950s and their resolution,
followed by a brief history of the emer-
gence of the conceptual structure and
methodologies that now make computa-
tional materials theory powerful enough
for “the molecular designing of materials
and devices.” Because of space limita-
tions, I cannot systematically cover all the
important developments in that vast field
over so long a period. Instead, I have cho-
sen to follow several threads through
time, selected because they are representa-
tive and because of personal familiarity,
not because I consider them necessarily
more important or more central than those
omitted.

Two Great Puzzles of the 1950s
Why Does Band Theory Work?

The band theory, described in every
textbook on solid-state theory, works! It
provides a conceptual explanation of the
distinguishing properties of metals, semi-
conductors, and insulators. Yet it is rooted
in the independent-electron picture. Of
course, it was also understood that elec-
tron—electron interactions were present
and strong, comparable to all other ener-
gies. The many successes of band theory
thus posed the deep question of how so
many features of the independent-
electron model survived in the presence of
strong interactions. To add to the confusion,
the Hartree—Fock approximation, the best
one-electron approximation for the
ground state, yields nonsense for the low-
lying excited states of metals, a —(T In T)
dependence of the specific heat of metals on
absolute temperature T at low temperatures.?

Why Does the Nearly Free Electron
Theory of Metals Work?

It is tempting to dismiss the nearly free
electron theory of metals of the elemen-
tary textbooks simply as a tentative step
along the way to a “real” theory, and yet it
works. As I stated in Reference 3:

The Hume—Rothery rules for the phase
diagrams of noble metal alloys* were
explained by Jones® on the basis of a
nearly free electron model. Even more
striking, the mean free paths of elec-
trons in the alkali metals change only by
a factor of two or so upon melting, re-
maining long above the melting point
[despite the loss of the periodicity of
the atomic structure of the crystalline
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Table I: A Timeline for the Emergence of Computational Materials Science.

Evolution of computational power, algorithms, visualization tools

Further development of pseudopotential methods
Car—Parinello method, quantum dynamics

1955-2005

1956-1958 Fermi liquid theory

1959 Pseudopotential theory
1960-2005 Multiscale, hierarchical approaches
1964, 1965 Density functional theory

1973 Linearized basis sets

1973-1990

1985

1986 Quasiparticle spectra

1992-1996 Dynamical mean field theory

solid].® Even for covalent insulators like
diamond and silicon, the first band
structure calculations for these mate-
rials yielded energy bands that were
recognizable distortions of the free elec-
tron bands folded back into the first
Brillouin zone.>””

More dramatically, Shoenberg and his
students showed via the deHaas—van
Alphen effect that the Fermi surfaces of
the simple metals are weak distortions of
the free electron sphere,® as emphasized
by Harrison."! For example, the relative
deviation of the radii of the Fermi surfaces
of Na and K from constancy is of order
10°-10%1° Again, it was understood that
electron—atom interactions were present
and strong, comparable to all other ener-
gies. The many quantitative successes of
the nearly free electron theory thus posed
the deep question of why those interac-
tions failed to manifest themselves.

Key Conceptual Advances
Fermi Liquid Theory

The first step toward a deep under-
standing of why band theory works was
the introduction of Landau’s Fermi liquid
theory of metals."”? If adiabatic perturba-
tion theory in the Coulomb interaction be-
tween electrons converges, there is a
one-to-one correspondence between the
eigenstates of an appropriate independent-
particle system and a set of approximate
eigenfunctions of the actual interacting-
particle system. The low-lying states
among the latter have finite but long life-
times. The excitations of the independent-
particle system, electrons above the Fermi
surface and holes below it, stand in one-
to-one Correspondence to the excitations
of the interacting system (quasiparticles),
quasielectrons above and quasiholes
below the Fermi surface of the metal.
Ignoring phonons, the lifetime of a
quasiparticle is inversely proportional to
the square of its excitation energy and
thus diverges at the Fermi surface. Al-
though invented by Landau to explain
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why the independent-electron model of
metals appeared to work, the quasipar-
ticle concept is even more powerful for
semiconductors and insulators than for
metals. There is a quasiparticle band struc-
ture. Ignoring phonons again and photons
as well, a quasielectron in an empty
conduction-band state can only lose en-
ergy by an Auger process in which a
quasielectron is kicked up into the con-
duction band, leaving a quasihole behind
in the valence band. The minimum energy
required to create this quasielectron—hole
pair is the bandgap. Thus, all quasielec-
trons excited into the conduction band by
an energy less than the bandgap above the
bottom of the conduction band have infi-
nite lifetimes, and similarly for quasiholes
in the valence band.

The formal theory of many-electron sys-
tems, which had been emerging since the
1930s, was given a sharper focus by
Landau’s Fermi-liquid theory. For simple
metals, the quasiparticle kinematics and
dynamics turned out to differ little from
those of noninteracting electrons. Never-
theless, exchange and correlation effects
remained important. They play a major
role in setting the value of the Fermi level.
It is the dynamical screening of the ex-
change by electron correlation that re-
stores the proportionality of the heat
capacity to T. Electron correlation refers to
the influence on the motion of each elec-
tron of the difference between its dynamical
interaction with all others and its aver-
aged interaction. The effects of electron—
phonon interactions were sorted out, explain-
ing the large effective masses of quasi-
particles in the heavy simple metals. Two
further early developments were of prime
importance for many-body theory and for
condensed-matter physics in general, the
BCS (Bardeen—Cooper—Schrieffer) theory
of superconductivity”® and the theory of
the Kondo effect."* As these and many
later important developments have not
been central to the emergence of first-
principles computational materials theory, I
shall not dwell upon them.

Pseudopotential Theory

The answer to why valence and con-
duction electrons behave as though they
were nearly free in simple metals was
provided by pseudopotential theory
in the form introduced by Phillips
and Kleinman®™ within an independent-
particle framework. They divided the
electronic states into core states little af-
fected by their presence in a material and
valence/conduction states profoundly af-
fected. For the latter, they introduced
pseudowave functions, relaxing the re-
quirement of orthogonality to the core
functions. Instead, an additional repulsive
potential was added to the Hamiltonian
generating the pseudowave functions.
Combined with the potential in the origi-
nal Hamiltonian, it became known as the
pseudopotential. The matrix elements of
the pseudopotential important for deter-
mining the shape of the Fermi surface in
simple metals and of the energy bands in
simple semiconductors turn out to be
small, whence their nearly free electron
character. The repulsive potential is in fact
a Pauli repulsion, arising from the require-
ment of orthogonality to the wave func-
tions, and it is the kinetic energy
introduced by the requirement of orthog-
onality that is captured by the repulsive
potential and that cancels the attractive
inner region of the atomic potential.'®

The pseudopotential concept and its
cancellation theorem'® have not only
clarified the question of free-electron-like
behavior, but have deepened our under-
standing of crystal structure'” and the
properties of liquid metals,® and clarified a
broad range of chemical trends.

Density Functional Theory

The first goal faced in designing a mate-
rial is the accurate determination of its sta-
ble ground-state electronic and atomic
structures by minimizing the total energy
of the system. While the conceptual ad-
vances provided by the quasiparticle and
pseudopotential theories were fundamen-
tally important, they did not advance us
toward that goal. Pseudopotential and
other preexisting or contemporary meth-
ods could accurately determine the states
of a single electron in a given potential V,
but the questions of how V should be
determined and how the total energy
would emerge from those states remained
open. The Hartree approximation an-
swered both questions too crudely. The
Hartree—Fock approximation was both
computationally intensive and gave poor
results for certain properties of metals.
Slater’s Xo method simplified the
Hartree—Fock equations by introducing a
local approximation to the exchange
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potential but incorporated an empirical
parameter o.'®

In 1964, Hohenberg and Kohn intro-
duced density functional theory (DFT),”
showing that one could base the formal
structure of many-electron quantum me-
chanics on the electron density in place of
the many-electron wave function. This
revolutionary insight was followed in
1965 by a demonstration by Kohn and
Sham of the existence of an independent-
particle system with the same ground-
state electron density as the many-electron
system.”’ Specific prescriptions were
given for the potential V in which the elec-
trons moved independently, and for the
connection between total energy and the
electron density, the density functional,
answering the open questions posed ear-
lier. Attention then focused on finding ad-
equate approximations to the density
functional and the Kohn-Sham potential
V as well as on computational schemes to
exploit the new insights.

Key Methodological Advances
Linearized Basis Sets

Methods based on the pseudopotential
concept proved computationally efficient
for lighter atoms. M.L. Cohen and his stu-
dents, in particular, thereby provided a
quantitative theoretical basis for broad
areas of semiconductor physics.?! In the
1960s, however, when pseudopotentials
were first in wide use, they had limita-
tions for application to oxygen, making
oxides difficult, and for d and f states, put-
ting transition metals, rare-earth metals,
actinides, and their compounds out of
reach. Schemes usable for such materials
already existed, the augmented plane
wave (APW) method of Slater” and the
KKR method of Koringa and Kohn and
Rostoker.?*?* As formulated, however,
they were too computationally intensive
for the times. The problem was that the
basis sets used in those methods were
energy-dependent, so the matrix elements
in the secular equation for the energies be-
came energy-dependent, a major compli-
cation. In 1973, Anderson? showed that it
was possible to linearize that energy de-
pendence about a well-chosen energy
without loss of accuracy, restoring the
linear form of the secular equation. Such
linearized methods were much less com-
putationally intensive, and the entire peri-
odic table became accessible.

Pseudopotential Methods: Further
Developments

With pseudopotentials, a plane-wave
basis can be used to expand the one-
electron wave functions of the Kohn-
Sham theory. Plane waves offer many
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advantages over more complex, atom-
related basis functions. Quantities more
efficiently computed in k-space such as
the kinetic energy can be computed in the
plane-wave basis set, but quantities more
efficiently computed in real space can be
computed there, with fast Fourier trans-
forms allowing efficient passage between
real space and k-space. Forces on nuclei
are much easier to compute in a basis
independent of nuclear positions. Conse-
quently, systematic development of pseudo-
potential methods continued. These
developments have been reviewed in
Martin’s monograph on electronic struc-
ture.”® The key developments were norm-
conserving pseudopotentials”* separable
pseudopotentials,® and ultrasoft pseudo-
potentials.*® The latter in principle opens
the entire periodic table to electronic struc-
ture computations using plane-wave basis
sets, subject to the limitations of the ap-
proximations used to construct the den-
sity functional, about which more later.

The Car-Parinello Method

Up through the mid-1980s, DFT was used
to calculate the electronic ground-state en-
ergy for a preset nuclear configuration in
the Born-Oppenheimer approximation.
Varying the nuclear configuration then
generated the potential energy surface on
which the nuclei moved. Finally, one
could minimize the nuclear potential en-
ergy to find the stable ground-state struc-
ture or use it in molecular dynamics.
However, minimizing the electronic ground-
state energy for each nuclear configura-
tion is computationally very intensive.

In 1985, Car and Parinello® found a
way to accelerate the computation. In DFT
via the Kohn—Sham theory, the total en-
ergy is a functional of both the set of occu-
pied Kohn-Sham independent-electron
spin orbitals and the set of nuclear coordi-
nates. Car and Parinello pointed out that
minimizing the energy for each nuclear
configuration could be avoided by treat-
ing the Kohn-Sham spin orbitals as
fictitious classical coordinates and intro-
ducing a classical dynamical equation of
motion for them coupled to the classical

equations of motion of the nuclei. With
damping terms judiciously added, it was
found that computational efficiency was
greatly enhanced in the search for ground-
state electronic and atomic structures. Al-
ternatively, the method could be run at
finite temperature, generating an efficient
quantum molecular dynamics. Pseudo-
potentials and plane-wave bases are par-
ticularly well adapted to this method, and
therefore this method is in widespread use.
Complex molecules, liquids, glasses, and
many other systems have been studied.

Dynamical Mean-Field Theory

With these methodological advances,
the accuracy of a calculation with a given
density functional was no longer an issue.
Instead, attention focused on two other
limitations, the inadequacy of the existing
approximations to the density functional
for systems in which the electrons are
strongly correlated and limitations on the
size of the systems that can be tackled. I
discuss progress with the first limitation
in this section and with the second in the
next.

Electron correlation becomes important
when energy bands are narrow and elec-
tron—electron interactions are strong, both
associated with relatively tightly bound
valence and conduction electrons. Thus
transition metals, rare-earth metals, and
actinides and their compounds, with their
more tightly bound d or f states, may con-
tain strongly correlated electrons. The ap-
proximations to the density functional
now in use for the study of materials have
all evolved from the local density approx-
imation, the so-called LDA,* which ap-
proximates the exchange and correlation
energy density of a real system locally by
that of a uniform electron gas of the same
density. The electron density in strongly
correlated materials varies rapidly, and
nonlocal effects are important, so it is not
surprising that the LDA and its improve-
ments fail in these materials.

Bands are narrowest and interactions
strongest among transition metals in the
late 3d series. For example, while the total
energy, lattice constant, and magnetic
moment of ferromagnetic nickel can be
satisfactorily calculated by standard DFT
methods, these overestimate the Curie
temperature by a factor of two. A some-
what ad hoc introduction of correlation
fixes the error. Heavy fermion systems,
valence fluctuations, and the complex
phase diagrams of the actinides are be-
yond reach.

However, these have all been brought
within reach by dynamical mean field the-
ory (DMFT),* which treats correlation ef-
fects explicitly in an approximation that
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becomes exact when the coordination
number diverges. DMFT computations re-
quire input information derived from
standard DFT computations. There have
been substantial recent successes.? The
computations are intensive, limiting the
structural complexity of the materials
studied, but it is still early in their history.

The Power of Evolution

We are all familiar with Moore’s law; for
five decades, computing power per unit
cost has grown exponentially with time.
Processing power doubles approximately
every 18 months and memory capacity
every two years. We are less familiar with
its correlate relating to software instead of
hardware. The codes we use for electronic
and atomic structure computations have
grown correspondingly in power. In the
18-year period between 1978 and 1996,
there was a hundredfold increase in the
size of treatable systems, a doubling every
2.7 years. At present, 1000 atom systems are
accessible to a full quantum-mechanical
treatment.

The factors involved in this dramatic
growth are of course more powerful com-
puters with more memory, better pro-
gramming tools, bigger subroutine
libraries, and commercially or publicly
available evolving electronic-structure
codes. Perhaps most important, however,
has been the deepening of our under-
standing of the underlying theory and the
recognition that with greater computing
power and memory, more sophisticated and
accurate theories can be implemented.

Another important factor is the emer-
gence of powerful visualization programs,
which enable us to make sense out of the
flood of data emerging from the computa-
tions, thus taking advantage of the human
brain’s remarkable pattern-recognition
ability.

There is no indication that this evolu-
tion of capability is slowing down.

Hierarchical Approaches

There are problems that, while feasible,
are too complex to be treated directly with
first-principles methods. The complexity
can arise because the physical scale of the
problem is too large. Examples are: (1) dis-
location movement, which is atomic in
scale at the core, but generates a time-
dependent macroscopic strain field;
(2) crack propagation, which is atomic in
scale at the tip, with again a time-
dependent macroscopic strain field;
(3) grain growth, Ostwald ripening, and
phase transitions, which are atomic in
scale at interfaces but generate macro-
scopic changes in morphology; and (4) en-
zyme activity, which is atomic in scale at
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the active site, but the overall catalytic
mechanism involves much of the entire
protein. Such problems could require sim-
ulations involving more than 10° atoms,
which is not yet feasible if treated quan-
tum mechanically. The strategy for deal-
ing with this multiscale complexity is to
use fully quantum mechanical methods at
the atomic scale, couple these to classical
molecular dynamics using model force
fields at intermediate scales, and, if neces-

But has all this progress
resulted in “the molecular
design of materials”? The

answetr is yes.

sary, couple the latter to classical contin-
uum methods for the fully macroscopic
scale.

Alternatively, the complexity can be
such that the number of atoms is not too
large for simulation, but the number of
iterations required to generate the infor-
mation desired may be too large. In such
cases, a successful strategy can be to map
the fully quantum mechanical problem
onto a much simpler dynamical or statisti-
cal mechanical model that is feasible to
simulate. The parameters of the model are
then generated by many fewer quantum
computations. Examples are alloy bulk
and surface phase diagrams for which the
mapping is onto a generalized Ising
model; ferroelectric films or multilayers,
for which the mapping is onto a Lan-
dau—-Ginzberg free energy functional, and
trends in surface chemistry and heteroge-
neous catalysis, for which the mapping is
onto a tight-binding model of electronic
structure.

In the complex multiscale problems, the
parameters of the force fields or the model
Hamiltonian can be computed from rela-
tively small quantum mechanical compu-
tations. The LDA computations on which
the DMFT computations are built also
provide such a mapping. Thus, there may
be no clear boundary between the two
strategies. One uses them when and
where one needs them.

Finally, complexity can arise when one
deals with electronic excitation processes
in even quite simple systems, for example,
in the optical absorption of semiconduc-
tors. Here the mapping can be onto a sim-
plified Bethe-Salpeter equation with the
quantities entering taken from LDA com-
putations.® Alternatively, much effort is
now going into the time-dependent gener-
alization of DFT known as TDDFT; as the
time-dependent density functional be-

comes better understood, one can expect
substantial progress.

Concluding Remarks

But has all this progress resulted in “the
molecular design of materials”? The an-
swer is yes. The bandgap engineering of
semiconductor device structures is now
routine, with electronic structure compu-
tations as an essential component of the
process.*

I shall close with examples relevant to
von Hippel’s interests in materials of high
dielectric constant and in ferroelectrics."®

Polycrystalline CaCu;Ti Oy, has an un-
usually high dielectric constant ¥ and is
under consideration for high-x applica-
tions. The x of the single crystal reaches
10°. The central issue that had to be settled
before applications might proceed was
whether the high k¥ was intrinsic to the
material or extrinsic. It was shown to be
extrinsic by state-of-the-art first-principles
computations of the electronic structure,
phonon frequencies, Born effective changes,
and the intrinsic value of the x of the ma-
terial % The latter turned out to be three
orders of magnitude smaller than ob-
served. Such computations on a material
with 40 atoms per unit cell and an antifer-
romagnetic ground state were beyond
imagining in von Hippel’s time, yet the
outcomes are very important to the materials
he studied and have since become impor-
tant for many commercial applications.

Finally, there are now research pro-
grams to design, via computations, and
fabricate, via multilayer deposition tech-
niques, complex multifunctional mate-
rials: multiferroics, ferroelectrics with
interfacial-strain-enhanced properties,
and other novel materials.
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