NFL Pros vs MSE Profs—Sizing Up the Competition for MSE Faculty Positions

Mark D. Losego; School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.

Professional athletes are often described as “elite”—reaching a level of athletic excellence that most of us agree we can never achieve. At each level, from Pop Warner to High School to College, football players are cut from teams based on performance until an “elite squad” of 1,996 Pros play each Sunday in the U.S.’s National Football League (NFL). Interestingly, materials science and engineering (MSE) departments across the U.S. employ roughly the same number of professors (~1700), and unlike an NFL player whose average career is only 3 years, MSE professors often retain their position for 30 years. Considering these numbers, it is fair to ask: Who is more elite NFL Players or MSE Profs?

This talk will provide a light but insightful look comparing the competition and process for reaching both the NFL field and an MSE professorship. While elite performance and “total commitment to one’s craft” are obvious similarities, many parallels in “intangibles” come into play when making that final hiring decision, including: specialization / flexibility (e.g., every football team only needs 1 place kicker), character (e.g., Johnny Manziel), your pedigree (DI vs. DII) and your network (e.g., Christian Hackenberg’s recent move to the Raiders). Perhaps most importantly, though, we must remind ourselves that the faculty hiring committee (like NFL coaches) are human and use a mix of logic and emotion (unless you are Bill Belichick) to reach a final hiring decision – so bringing the proper mix of substance and excitement along with a little luck is usually what’s necessary to land that perfect job. But if you decide that a position outside of academia suits your lifestyle better, that’s ok – then you can relax on Sundays while both the NFL Pros and the MSE Profs practice their craft (only one of which provides millions of fans amusement).
Working in academia in a foreign country provides for unique opportunities and experiences that would be difficult to achieve through a traditional domestic position. While teaching and training young students anywhere can be fulfilling, introducing students to the benefits of “internationality” is something that is best experienced away from one’s home country. Japan, while possessing the third largest economy on Earth, is still ethnically homogenous, with foreigners making up less than 2% of the total population. Combined with a declining birth rate, the need for foreigner workers will continue to increase, resulting in more opportunities for foreigners to access positions in academia. In this presentation, I will outline the path I followed from being a PhD candidate in the United States (University of Massachusetts Amherst) to the position I have today, as an Assistant Professor at a National University in Japan (Hokkaido University). Specifically, I will address the following topics: finding positions in foreign countries; overcoming and dealing with language barriers; forming a research group and “fitting in” in a foreign environment; understanding and applying for funding; and the future of international faculty working abroad. I hope to express the successes as well as the struggles I have encountered through my journey. Through this presentation I aim to demonstrate the type of people who could be successful in this type of career, and hope to introduce a new path as faculty members at international universities.

4:00 PM *BI02.01.05
A Perspective on Pursuing the Academic Path Rebecca Kramer-Bottiglio; Yale University, New Haven, Connecticut, United States.

In this talk, I will discuss my path to academia, experiences with proposal writing, and insights on pursuing an academic career. I will also discuss young investigator and career award opportunities. I intend to keep the talk brief to allow for an engaging interactive session based on topics of interest to the audience.

4:30 PM PANEL DISCUSSION: MARK LOSEGO, MICHAEL CHABINYC, DANIEL KING, DAVID BAHR, REBECCA KRAMER-BOTTIGLIO

SESSION BI02.02: Reaching Tenure through Research, Teaching and Service I
Session Chairs: Allen Kimel and Lisa Rueschhoff
Tuesday Morning, November 27, 2018
Sheraton, 3rd Floor, Dalton

8:30 AM *BI02.02.01
Navigating Your Career with Confidence Susan B. Sinnott; The Pennsylvania State University, University Park, Pennsylvania, United States.

As you prepare for a career in higher education, it is not always clear how best to navigate the choices available. This presentation will summarize the ways in which materials science and engineering in academia has changed over the last decade, the implications for the field more broadly, and projections for the future. In addition, thoughts on best practices for navigating the career landscape will be discussed that should be helpful for your current job search or to prepare for future opportunities.

9:00 AM BI02.02.02
Women in Physics in Ireland—Role Models are Out There Yvonne Kavanagh1, Sheila Gilbeany2, Eilish McLoughlin3, Miriam Byrne4, Miryam Arredondo5 and Katja Poppenhaeger5; 1Institute of Technology Carlow, Carlow, Ireland; 2Institute of Physics, Dublin, Ireland; 3Dublin City University, Dublin, Ireland; 4National University of Ireland Galway, Galway, Ireland; 5Physics, Queens University, Belfast, United Kingdom.

Physics is one of the core disciplines in Materials Science and Engineering. Therefore, it is important for the next generation of researchers, especially females, to see that there are successful pathways to a sustainable career in academia. Successful pipelines must be supported. As each stage of the pipeline, it has been shown that females are less likely to engage unless they can see what success looks like. This is evidenced in a sense of belonging and exposure to successful role models. It is therefore essential to highlight the success of women in physics, in order to inspire the next generation.

Research carried out in Ireland has shown that females are successful when they engage with physics. In particular female researchers are very successful in obtaining research funding when compared to other disciplines. Ireland has seen strong females in academia challenge the status quo and this has resulted in positive initiatives to encourage the promotion of females in academia. A study carried out in 2016 by the Higher Education Authority in Ireland captured the typical scissors view, where women are in the majority in the lower paid jobs in academia and greatly underrepresented when looking at the professor and the senior executive management level. This has resulted in the Higher Education Authority making gender equality in higher education a national priority as part of its funding compact with higher education institutions. It has also resulted in the linking of national funding to the attainment of Athena Swan Bronze Awards. This has focused attention on women in STEM, in particular. The Minister for Higher Education has highlighted the lack of movement towards gender equality in STEM and is responsible for the creation of a National Taskforce on Gender Equality. The Taskforce have reported and produced an action list to target inequality setting specific targets for the higher education sector. This presentation tells the story of where women in Physics in Ireland are currently. It demonstrates how this is enabled by government policy. It reinforces the role the International Conference for Women in Physics has in tracking the journey and how Project Juno is enabling the physics community to improve gender equality.

9:15 AM *BI02.02.03

One of the most important lessons learned during grad school is that the vast majority of literature is either incorrect, incomplete, and/or so limited in its applicability to be of little use. The same can be said of career advice, no matter how well-intended or hard-earned. As with literature, the trick—often only recognized in hindsight—is separating signal from noise and synthesizing new insights from multiple inputs plus the researcher’s own datasets, experience, perspective, and interests. As in research, outliers can be incredibly useful, pointing to a need to recast the question and/or reinterpret the data using a different model. They can also be distracting and frequently over-weighted during analysis. Unfortunately, a career is an experiment with too many variables and too few data points to be effectively optimized; fortunately, there are many paths to (and definitions of) a successful academic career.
Navigating a Career in Academia—From Application to Pre-Tenure and Early-Tenure—Lessons Learned Along the Way

10:00 AM BREAK

The Pew Research Center surveyed AAAS scientists in 2014 to inquire about the public’s limited knowledge of science. 86% of respondents stated this is a major societal problem. A second question drilled down into the reasons for this lack of science literacy in the general population. AAAS scientists were asked to rate “not enough K-12 STEM”, “lack of public interest in science news”, “lack of media interest in science”, and “too few scientists who communicate findings” as major or minor reasons. Not surprisingly, the AAAS scientists list their lack of communication as the least important reason for this public shortcoming. I disagree. If the majority of scientists and engineers deemed public communication as important as their research or professional practice, then the public understanding of STEM topics would surely be much better than it is now. This is particularly true for materials scientists, given the dearth of public knowledge of MSE. In an effort to change this at Cornell University, I partnered with WSKG, my local NPR/PBS affiliate to create a new course, ENGRG 3360: Developing Communicative Practice Through Transmedia and Community Engagement. I co-developed and co-taught the course with WSKG’s Director of Science Content, Services, and Programming and we launched it in S2018. Students created publically accessible presentations/videos, leveraged social media platforms to share their science and engineering endeavors, and mentored local high school students. We used the PechaKucha as an innovative presentation format to develop students' abilities to identify and communicate their key idea in a clear message tailored to a target audience. The video phase of the course was a team effort, with teams composed of high school students, undergraduates, and graduate students. Our high school population, a group of twelve local students spending their entire senior year on the Cornell campus exploring engineering, participated in video production and played the very valuable role of assessing the suitability of the content created for teenagers and the general public. Students were also required to create technical social media posts throughout the semester. While they are comfortable with social media in their social lives, it is paradigm shift for them to use these platforms for professional endeavors. We trained the students to do so and gave them ample opportunity to hone these skills. #CornellEngComm was created to track the content-created and Twitter emerged as the social media platform of choice. Video and presentation content created by the students is being aligned to NYS and national education standards and lesson plans are being created for PBS Learning Media, a web-based resource used by students and teachers nationwide. In this talk, I will discuss course development and the partnership with public media. Samples of student work will be shown and opportunities for leveraging the content created will be discussed.

10:30 AM #BI02.02.05
Navigating a Career in Academia—From Application to Pre-Tenure and Early-Tenure—Lessons Learned Along the Way

Nazanin Bassiri-Ghari; 1,2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States; 1School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States.

Getting ready for a career in academia can seem at times a daunting task, but after years of preparation through doctoral studies and subsequent post-doctoral work, multiple applications to open positions and interviews, finally a match is made. In many cases, however, the process leading to this point is not only the beginning of a lifetime of learning, but also (and maybe even more so) the beginning of an even bigger challenge. The challenge is that of establishing oneself as a new and independent researcher, educator and mentor…. and of course, along the path, make it through the tenure process. While tenure is still seemingly the biggest hurdle to pass in the academic career, the process need not to be necessarily an obstacle. The pre-tenure and early tenure years can be instead some of the most satisfying and fulfilling time in the academic life of an early-stage scientist. This talk will address some of the approaches to tenure – from the start of the tenure-track, through the critical review, tenure, and finally early-tenure stages – that will allow you to enjoy the process and not lose the spirit of wonder: because losing the sense of wonder is much worse than not making tenure. The author will draw on her personal experience through the pipeline, as well as some of those of her close friends and colleagues. She promises to not embellish the truth (yes, chances are things will get tough at some point!), but also not to depress the attendees with endless counts of “a series of unfortunate events”. And while there is no such a thing as “happily ever after”, she will share some of the ways of keeping the happy before and after tenure.

11:00 AM #BI02.02.06
Future Faculty Expectations

An academic's day has changed very little in the last several centuries—you think, share ideas with others, critique, and occasionally sleep. Of course the scope, structure, and finances of universities have shifted more dramatically, but still the expectations of faculty members remain remarkably similar: create knowledge; serve your institution and more broadly your profession; teach and mentor the next generation. The practical reality, though, is that we are all essentially small business owners, keeping our 'product' viable through publications, talks, student dissertations, funded grants, outreach, and even tangible results. The merit systems (financial, tenure, and respect of your peers) reward and indeed demand excellence in these important areas—all of them. But will universities, and faculties, function the same in the future? Increasing trends towards online learning may be particularly disruptive to the traditional model. How can prospective and new faculty, and their institutions, harness this trend instead of fighting it?

11:30 AM PANEL DISCUSSION: GEOFF BRENNCKA, SUSAN SINNOTT, NAZANIN BASSIRI-GHARB, BRYAN HUEY, YVONNE KAVANAGH

SESSION BI02.03: Reaching Tenure through Research, Teaching and Service II
Session Chairs: Allen Kimel and Victoria Miller
Tuesday Afternoon, November 27, 2018
Sheraton, 3rd Floor, Dalton

1:30 PM #BI02.03.01
From “Being Taught” to “Teaching”—A Personal Perspective of a Young Faculty Member
Eva Hemmer; University of Ottawa, Ottawa, Ontario,
This presentation will provide a snapshot on the journey of a materials scientist from Germany moving via Japan to Canada. It will not only tell about the geographical, but also about the scientific and academic journey, and how studying materials science and engineering can lead to an academic position in a chemistry department, conducting research on multifunctional lanthanides in molecules and nanomaterials. In this context, some experience from the time being a PhD student, from the period discovering new countries and research areas as a postdoctoral fellow, and the recent ongoing adventure of starting an independent research group as assistant professor will be shared with the audience. Also, first teaching experiences will be illuminated: another potential (and unexpected) source of culture shock. While the search for the ultimate recipe for the straight forward achievement of a scientific and academic career is still going on, some of the basics that may be required for a scientific trip by any young researcher or scientist will be suggested for discussion. These basics clearly include curiosity, self-motivation and an open mind, not to forget about endurance as well frustration tolerance, while great mentors are found to play a very important role at each stage of career.

2:00 PM BI02.03.02
From a Personal Experience as a Teacher of an Advanced Course on Materials Micromechanics—How the Background Gap Between Basic Materials Education and Advanced Topics Can be Filled with the Aim of Not Disappointed Enthusiasm of Students Not Suitably Informed on the Preliminary and Basic Notions Needed to Know Roberto Contro; Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico Milano, Milano, Italy.

The aim of this paper is showing that the student expectations can be not disappointed if they are personally involved in a learning itinerary where firstly their passion, ambition and intelligence are appreciated and stimulated. As consequence they will consolidate their self confidence and will accept to measure their real capability to learn notions indispensable to acquire a sufficient and rewarding preparation, not as a tool to overcome the profit examination but mainly to acquire consciousness of being able to win a challenge, sometimes sounded very difficult because of lacks in a previous basic background. In this way this experience might be useful to approach other challenges that unavoidably will met in their study a professional career. The word of order of a teacher should be identifying best talents and mainly discovering talents which often are hidden in a mass of students who, for several reasons like their familiar and cultural environment or also for a certain personal shyness, tend to do not recognize even to themselves. The main step of such a learning itinerary, applied to a master course of materials micromechanics will be described with reference to the adopted textbook: FUNDAMENTALS OF MICROMECHANICS OF SOLIDS, Jianmin Qu and Mohammed Cherkaoui, Wiley, 2006. Meaningful home-exercises will show as examples of final course results and a related brilliant career promoted as well.

2:15 PM BI02.03.03

Educational institutions that foster inquiry and innovation prepare students for future careers in science and engineering. Inviting students, as young as high school age, to engage in materials science research is mutually beneficial to aspiring scientists, as well as the university faculty who engage them. A case study for such work details research performed by high school students contributing to the Soft Robotics Toolkit. The open source nature of the soft robotics field presents opportunities for students outside of a university research lab to participate and advance the field. Exposing secondary school students to this rapidly growing field allows for evolution of the soft robotics industry in new and imaginative ways. Students at The Haverford School in Pennsylvania are developing materials-based approaches to soft robotics problems. From this, they gain fundamental knowledge in materials, develop technical communication skills, and are empowered to innovate in the future. As a co-curricular program, secondary school students, ranging in age from 13 to 18 years, collaborated to successfully design and build solutions to fundamental materials issues and prototype a soft robotic device to achieve a goal meaningful to them. In year one of the program, students developed gelatin-based actuators which are biodegradable and edible. In year two, the team developed a simple, one-step fabrication process for building actuators and applied them in a glove. The students collaborated with an art teacher to program the glove to transfer motion from accomplished to novice artists. This group now has a new skill set and confidence in the field to allow them to approach larger problems. This presentation will discuss the technical merits of their work as well as the broader benefits to the field of materials science. In a controlled study, we found that when students were presented with an opportunity to innovate: synthesizing a novel solution to authentic problems without the constraints of a prepared kit, common at the high school level, they were more creative and less constrained in future projects or design challenges. Outreach programs like this generate interest in the field of materials science and present opportunities for faculty to perform outreach that will generate the creative and prepared students they want in their laboratories. Soft robotics is just one application of accessible materials science outreach. This presentation will detail methods of developing this type of unique outreach initiative across the materials science field. Making students aware of what is possible will inspire the next generation of materials scientists, while stimulating the current practitioners with creative new ideas.

2:30 PM BREAK

3:00 PM *BI02.03.04
Understanding the Impact of Design in High School Outreach Camps Kaitlin Tyler, Nicole Johnson-Glauch, Leon Dean and Jessica A. Krogstad; University of Illinois at Urbana-Champaign, Urbana, Illinois, United States.

Outreach camps are an effective route to increasing interest in STEM disciplines, especially for underrepresented groups. They are also common components in the broader impact plans for many early career researchers. However, there is very little basis for understanding which aspects of outreach camps lead to positive outcomes. This is due in large part to the difficulty in comparing existing camps both within specific STEM disciplines and across them. As a result, there is little science-based guidance for the development of effective outreach camp structure or content. Because of this, we specifically target the process of design in outreach camps due to its importance in engineering degree programs. By comparing different methodologies for incorporating design thinking through a qualitative multi-case study across four engineering disciplines, we have begun to assess whether design can be used to positively affect outcomes of STEM outreach camps and provide guidance for outreach development.

3:30 PM BI02.03.05
Nanovation—An Interdisciplinary Outreach Program to Train the Next Generation of Scientists and Entrepreneurs Rita Black1; and Sarah Tullner2;1 California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, United States; 2Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States; 3Materials Science & Engineering, University of California, Los Angeles, Los Angeles, California, United States.

Entrepreneurship plays a crucial role in economic development by promoting technological innovation and job creation. A lack of experience and training in technology entrepreneurship is a problem that often persists up to and including doctoral training, and many universities are at a loss as to how to prepare students interested in an entrepreneurial career path. In order to address this pain point, the California NanoSystems Institute at UCLA created the
Funding Opportunities in Materials Engineering at the US National Science Foundation

Alexis C. Lewis; Civil, Mechanical and Manufacturing Innovation, National Science Foundation, Alexandria, Virginia, United States.

This presentation will describe funding opportunities related to Materials Science and Engineering at the National Science Foundation, including current programs, new opportunities, and planned focus areas. Additionally, the NSF Merit Review process will be discussed, including components of a successful proposal, finding the right home for your research, and proposal writing tips for early career faculty.

3:45 PM PANEL DISCUSSION: EVA HEMMER, JESSICA KROGSTAD, RITA BLAIK, HOLLY GOLECKI, MATTHEW STILWELL, LEIGH SMITH

We acknowledge the support of the National Science Foundation through grants DMR-1725823 and DMR-1726026.

4:15 PM PANEL DISCUSSION: EVA HEMMER, JESSICA KROGSTAD, RITA BLAIK, HOLLY GOLECKI, MATTHEW STILWELL, LEIGH SMITH

We acknowledge the support of the National Science Foundation through grants DMR-1725823 and DMR-1726026.
Maneuvering the diverse and complex funding pipelines has become a significant challenge for even the most promising researcher, and poses a threat to the future of materials science in academia. David Stepp brings nearly twenty years of experience at the U.S. Army Research Office to provide insight and perspective on the "why," the "what" and the "how" underpinning one of the preeminent materials science funding agencies worldwide. This talk will focus on suggested approaches that apply to all funding agencies, both in the U.S. and abroad. It will also include a discussion of some of the most common misunderstandings held by materials science researches when soliciting funding.

10:00 AM BREAK

10:30 AM *BI02.04.03

Transformative breakthroughs most of the time do not originate from the investigations of materials in the equilibrium state but in contrary at the margins of stability, in a regime at the limit or outside of the textbook knowledge within the discipline. In this context, this presentation will embrace materials and processing science approaches that are far from the thermodynamic equilibrium domain; i.e., directionally solidified eutectic structures, highly doped piezoelectric and thermoelectric materials, and other oxide materials with cage structures for electron emission. The intent is to elucidate the complex interplay between phase transitions for electronic/magnetic phase separation and untangle the interdependence between structural and electronic effects. I will also discuss what I consider to be promising research concentration areas within ceramics research for the aerospace materials for extreme environments portfolio of Air Force Office of Scientific (AFOSR), including the focused development of a ceramics processing science laboratory for ceramic matrix composites, the development of materials for use in the hypersonic regime.

11:00 AM PANEL DISCUSSION: ALEXIS LEWIS, DAVID STEPP, ALI SAYIR