SYMPOSIUM EE
Progress in Semiconductor Materials V–Novel Materials and Electronic and Optoelectronic Applications

November 28 - December 1, 2005

Chairs

Linda J. Olafsen
Dept. of Physics and Astronomy
University of Kansas
1082 Malott Hall
1251 Wescoe Hall Dr.
Lawrence, KS 66045
785-864-5856

Adam W. Saxler
Cree Inc.
4600 Silicon Dr.
Durham, NC 27703
919-313-5647

Michael C. Wanke
Sandia National Laboratories
MS 0603
P.O. Box 5800
Albuquerque, NM 87185
505-844-2532

Robert M. Biefeld
Dept. 1126
Sandia National Laboratories
MS 0601
Albuquerque, NM 87185
505-844-1556

Symposium Support
†AIXTRON, Inc.
†Epichem Inc.
†Veeco TurboDisc Division
†2005 Fall Exhibitor

Proceedings to be published in both book form and online
(see ONLINE PUBLICATIONS at www.mrs.org)
as volume 891
of the Materials Research Society
Symposium Proceedings Series.

* Invited paper
SESSION EE1: Infrared Materials and Devices
Chair: Linda Olsdén
Monday Morning, November 28, 2005
Constitution B (Sberaton)

8:00 AM EE1.1
Atomically Accurate Structure Analysis for Reliable Bandgap Engineering in Quantum Dot InGaN Layered Structures, Haiguang Yang1, Ming Zhong1, Michael B. Weimer1, Michael E. Flatté2, Christopher H. Grein3, Andrew P. Ongstad1 and Gerard J. Sullivan1;
1Texas A&M University, College Station, Texas;
2University of Iowa, Iowa City, Iowa;
3University of Illinois at Chicago, Chicago, Illinois;

Air Force Research Laboratory, Albuquerque, New Mexico;

As attempts to exploit the deliberate tailoring of optical transitions in quantum-confined semiconductor structures grow ever more sophisticated, accurate answers to the essential question of the atomic arrangements responsible for the confining potential frequency remain unavailable. Such ignorance forces an uncertain reliance on bandgap engineering paradigms whose predictive utility is judged against assumed (intended) rather than known (as-grown) structures. We describe a suitably powerful and general method for the complete solution of the relevant structure problem in InAs/GaSb strained layer superlattices whose fundamental bandgap may be tuned anywhere within the mid- to long-wave infrared region of the electromagnetic spectrum. This control, in principle exercised through appropriate design of the interface, is shown to influence the interband transition of the GaSb/InAs superlattice transition without any variation in the transition energy.

8:15 AM EE1.2
Investigation of Interfacial Bond Formation in W-Structured Type-II Infrared Photodiodes using Cross-Sectional Scanning Tunneling Microscopy, Jay Chan Kim1, Joseph G. Tischler1, Igor Vurgaftman1, Jerry R. Meyer1, Edward H. Alfer1, Lloyd J. Whittman1, Chadwick L. Canady2,1 and Eric M. Jackson3,1;
1Naval Research Laboratory, Washington, District of Columbia;
2SFSP Inc., Largo, Maryland.

"W-structured" type-II antimonide superlattices (W-SSLs) have many advantages for mid-IR semiconductor lasers, including higher differential gain and lower lasing threshold at higher operating temperatures. A typical "W" period consists of a hole quantum well (QW) sandwiched between two electron QWs, which are in turn bounded by barrier layers (e.g. InAs-InGaSb-InAs-AISb), creating a "W"-shaped band structure envelope. Recently we have been investigating ternary (and quaternary) W-SSL structures composed of InAs, InGaSb (InGaAsSb), and AISb (AlInAsSb) layers for use in long-wave and very long-wave infrared photodiodes. Interfaces play an important role in W-SSLs since twice as many interfaces are formed in one period compared with two-constituent superlattices such as InAs/GaSb. There are therefore more options available in W-SSLs to engineer the interfaces for strain compensation. We use x-ray diffraction to measure the overall strain in the W-SSLs, and cross-sectional scanning tunneling microscopy (XSTM) to directly image the atomic-scale structure, including the interfacial bonds, as a function of growth conditions. Difference in the local bond lengths of dissimilar interfaces, e.g. AlAs vs. InSb, results in specific contrast in XSTM images, allowing us to directly identify the interfacial bond types. We have observed that unforced AISb/InAs interfaces, where both shutters are switched simultaneously in order to create a neutral mix of interfacial bonds, actually consist predominantly of AlAs interfacial bonds, resulting in undesirable strain. In contrast, InGaSb/InAs interfaces are formed as intended. Recently, however, we have found evidence that reducing the As/In flux ratio to near unity can suppress the formation of AlAs bonds without degrading the superlattice. A further benefit appears to be much higher photoluminescence intensity for samples grown under the lower As flux rate. We will discuss the surface science underlying the formation of these interfacial bonds, the presence of strain in the superlattice, and the effects on the optical properties of the devices.

8:30 AM EE1.3
High Aspect Ratio Etching Of GaSb/AlGaAsSb For Photonic Crystals, Iron Arne Nilsson1,2, Anthony Martinez1, Renato Bugge1, Luke F. Lester2 and Bjorn-Ove Finland1;
1Department of Electronics and Telecommunications, Norwegian University of Science and Technology, Trondheim, Norway;
2Center For High Technology Materials, University of New Mexico, Albuquerque, New Mexico.

Emitters in the 1.7-2.4 µm (Mid-IR) spectral range are useful for a broad range of applications such as tunable diode laser absorption spectroscopy, free space optical communications and medical surgery. GaSb based emitters are well suited for emission in the mid-infrared range and there is interest to extend the use of photonic crystals (PC) to these materials. PCs are useful for enhancing light extraction from LED/VC defect lasers and PCs have enabled near-field photonic band edge lasers. To fabricate PCs in these materials the etch process needs to be well understood. Previous work has been done on dry etching of GaSb and AlGaAsSb [Zhang, et al., JVSTB, 1999] but there is little on the etching of the GaSb/AlGaAsSb heterostructure [PCs [Bewley, et al., Solid State Electron., 2002]. The cladding layers of a GaSb-based light emitting structure is typically AlGaAsSb with high Al content (80-90%). The core consists of low Al content (around 25%) AlGaAsSb spacers and GaSb quantum wells with high Ga content. PCs in this structure would be formed by either etching partially into the waveguide or all the way through. To have a uniform etch in the latter case, there should be no selectivity between materials. It is assumed the selectivity between GaSb and high Al content AlGaAsSb is the upper bound of the selectivity between low and high Al content AlGaAsSb. PCs designed for emission at 2 µm will usually have holes with a diameter of 500 nm or more depending on the volume and application. The etch depth will typically be between 1µm and 4 µm depending on waveguide design, which makes high aspect ratio etching essential. To achieve good pattern definition, etched sidewalls should be close to vertical, which will also aid in reducing simulations of the fabricated PCs. Interferometric lithography (IFL) with a 355-nm laser was used for pattern definition and inductively coupled plasma (ICP) consisting of BC3 and BCl3/Ar gas mixtures was implemented for the etching. Etching experiments were carried out using photore sist(PR), metal and dielectric masks. IFL is well suited for exposing PCs without defects and has an advantage over electron-beam exposure in speed and uniformity over large areas. ICP RIE was used because it allows high density plasmas at low bias voltages. Using a PR mask, etch depths of 1.0 µm and 1.5 µm have been obtained in GaSb and AlGaAsSb (90% Al), respectively, with vertical sidewalls. For etch depths around 1 µm vertical sidewalls were obtained. A selectivity of 3 between the PR and GaSb was obtained. For both GaSb and AlGaAsSb aspect ratios of 2.4 were obtained. The selectivity between the two materials was 1.1. Etch rates were found to vary significantly with hole diameter; a reduction from 670 nm to 450 nm resulted in a 15 % drop in etch rate. All results were obtained low DC bias (100-100 V) with etch rates as low as 55 nm/min and 50 nm/min for GaSb and AlGaAsSb, respectively.

8:45 AM EE1.4
3.3-4.3-µm High Brightness LEDs, Boris Anatolievich Matveyev, Nina Vyacheslavovna Zотова, Natalia Dmitrievna Ильинская, Sergey Arkadievich Karandashev, Maxim Anatolievichременя, Nikolay Matveevich Сту and Valerii Валериевич Рябов;
Rechnikov Laboratory of Nanosstructures, Ioffe Physico-Technical Institute, St. Petersburg, Russian Federation.

Recent years have seen extensive research of the mid-IR (2-5 µm) diodes and resonant cavity LEDs as well as conventional LEDs including those with immersion lenses have already broken the 1 mW output power barrier that is necessary for most practical applications. However, there are many applications, such as spectroscopic measurements with gratings and detector system calibration, call for high brightness/temperature rather than high power devices and thus the latter should be free of lenses that magnify the image dimensions. LEDs with flat output surfaces and 3.3-3.6-µm at room temperature have already shown the ability to simulate the black body heated up to 593 K (positive contrast Δτ = 300 K in the 3-5-µm band) [Narches C. Das et al., 2004, V. Malysenko et al., 2004]. In spite of high output power, results obtained in the literature for the flat uncoated LEDs it is clear that there is still a room for chip design and device performance improvements. Deep mesa that narrows the internal radiation diagram due to the reflections from the inclined mirror surfaces is a useful tool for out-coupling enhancement and is thus a useful feature of the high brightness sources. The effect of the above geometrical factor is well known for the InSb (6µm) negative luminescent devices [G.R.Nash et al., 2001] and efficient NIR and mid-IR LEDs. As a result of our knowledge there have been no attempts so far to investigate the impact of the mesa dimensions/shape on the output power in a Mid-IR LED with wavelengths shorter than 6 µm. We report on double heterostructure (DH) LEDs grown on heavily-doped n-InAs or undoped n-InAs substrates with 2-7 µm thick active layers formed.
from n-InAs ($\lambda=3.3 \mu m$) or n-InGaAsSb ($\lambda=3.7 \mu m$) or n-InAsSb ($\lambda=4.3 \mu m$) and p-InAsSbP claddings (for all LED types). DIs were treated to improve the wet photolithography process at 77 K. In the case of the n-InAs Sb absorption effect, current/emission crowding above the anode contact at 300 K and superiority of the negative luminescence power conversion efficiency over the forward one at elevated temperatures (say, at 480 K) due to suppression of the Auger and quenching of the active layers. The report will focus on the discussion of experimentally observed impact of several geometrical factors (active layer thickness, mesa and contact diameter and side wall height) on near and far field properties, output power, junction and contact resistance. For example, IV-VI mid-IR lasers with emission in the 1900 cm$^{-1}$ spectral range have been used in instruments for real-time measurement of exhaled nitric oxide (eNO). Laser tunability is sufficient for simultaneous measurements of the eNO measurement of exhaled nitric oxide (eNO), a capability that allows highly accurate determination of eNO concentrations in the low ppb range for assessing airway inflammation in patients with asthma. The presentation will begin with a review of recent progress in the development of liquid-nitrogen-free cryogenic cooling systems for IV-VI mid-IR lasers. Such systems, along with other advances including user-friendly software, have enabled the deployment of IV-VI laser spectrometers in clinical settings for breath analysis. Results are presented of established clinical utility in monitoring asthma patients and future potential medical applications ranging from renal and liver function monitoring to detection of cancer, the commercial market for mid-IR lasers promises to expand considerably. Motivated by these important applications, research continues on the development of improved IV-VI lasers, where the primary objective is to fabricate devices with continuous wave (CW) operation at room temperature thus allowing significant reductions in the size and cost of IV-VI laser spectrometers. Recent research results show that maximum CW operation temperature, T_{max}, can be increased significantly by improving active region heat dissipation. Double heterostructure lasers grown by molecular beam epitaxy (MBE) exhibited an T_{max}, of 400 deg C at 10% duty cycle ($T_{\text{max}}=200K$) when the low thermal conductivity PbSb substrate was thinned from 180 μm to about 15 μm. Other experimental results involving complete removal of the growth substrate and transferring IV-VI material directly to a copper substrate showed significant improvements in active region heat dissipation as determined from epi layer temperatures extracted from measured photoluminescence spectra. [Y. Liu, M. J. McCann, A. Sow, C. Yao, and P. C. Kanan, "Improvement of Heat Dissipation Through Transfer of IV-VI Epilayers From Silicon to Copper", IEEE Photonics Technology Letters 16, 2433 (2004)]. Work has also focused on MBE growth of (111) oriented quantum well structures to achieve a four-level laser design in which electron recombination effects can reduce the threshold for population inversion. Together, these new laser packaging methods and active region materials can help enable the fabrication of widely tunable mid-IR lasers with CW emission at room temperature.

9:30 AM *EEI.6 Mid-IR Intersub Band Cascade Lasers: Progress toward High Temperature Operation. B. Q. Yang, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California.

Mid-IR type-II intersub band cascade (IC) lasers take advantage of the broken band-gap alignment in type-II quantum wells to realize injected electrons in cascade stages for photon generation [1] with high quantum efficiency. Unlike intraband quantum cascade lasers, type-II IC lasers use intraband transitions for photon emission without involving fast phonon scattering, making it possible to significantly lower the threshold current density. Also, type-II IC lasers can have a wide wavelength tailoring range that is less limited by the conduction-band offset on the short wavelength side. Theoretical calculations [2, 3] projected the feasibility of type-II IC lasers to operate in continuous wave (cw) mode up to room temperature with high output power. Although significant progress [4-6] has been achieved toward such theoretical projections, the demonstration of IC lasers is still far from what they can be at high temperatures, particularly in cw operation. In this presentation, we will report recent progress in mid-IR IC lasers toward high temperature operation with reduced threshold current densities, including device operation in cw mode at TE cooler temperatures (>230K) and above room temperature pulsed operation (up to 350 K) in wavelength range from 3.2 to 3.6 microns. We will discuss feasibility of cw operation at room temperature and as well as directions in which the performances of IC laser performance based on experimental data. 1. R. Q. Yang, at 7thInt. Conf. on Superlattices, Microstructures and Nano-devices, Banff, Canada, Aug. 1994; Superlattices and Microstructures 17, 77 (1995). 2. J. R. Meyer, Y. Liu, and R. Q. Yang, Electronics Letters, 32, 45 (1996). 3. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, IEEE Photo. Tech. Lett. 9, 170 (1997). 4. R. Q. Yang, Microelectronics J. 30, 1043-1050 (1999); and references therein. 5. R. Q. Yang, et. al., IEEE Quantum Electron. 38, 559 (2002); and references therein.

10:30 AM *EEI.7 Development of high-power room-temperature continuous wave operation of type-1 In(Al)GaAsSb/GaSb diode lasers. Jingjun George Kim*, Haiyan An*, Ramon U. Martinelli*, Leon Shterengas* and Gregory L. Belenky*; 1Sarnoff Corporation, Princeton, New Jersey; 2ECE, SUNY at Stony Brook, Stony Brook, New York.

High-power mid-infrared laser sources are required for a wide range of applications, such as bio-photons, remote-gas monitoring, infrared counter-measures, LiDAR, and secure free-space communications. Room temperature (RT) continuous wave (CW) operation of these lasers will have significant advantages in overall system design and performance over the systems based on lasers with limited, pulsed-mode RT operation or with CW operation that requires cooling. We have fabricated and characterized 2.0- to 2.8-µm wavelength In(Al)GaAsSb/GaSb two-quantum-well diode lasers. The material was grown using molecular-beam epitaxy. All lasers have 2-mm cavity lengths and 100 µm apertures. Continuous wave operation exceeding 1 W was achieved from 16 µm to 19 µm. Measurements of gain, losses, threshold current, device efficiency and spontaneous emission of the lasers show that it is the hole leakage from QWs into the waveguide, and not Auger recombination that limits CW room temperature output power of long wavelength GaSb-based type-I QW lasers at least up to wavelengths of 2.8 µm. Design approaches to extend the operating wavelength of high power In(Al)GaAsSb/GaSb lasers to more than 3 µm are discussed.

11:00 AM *EEI.8 Investigation of Surface Passivation in InAs/GaSb Strained-Layer Superlattices Using PicoSecond Excitation Correlation (PEC) Lifetime Measurement and Variable Area Diode Array (VADA) Analysis. Zhimei Zhu†, Elena Pils†, Abdenour Antout†, Pallab Bhattacharya† and Sanjay Krishna†; 1Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan; 2Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico.

InAs/(Ga)Sb strained layer superlattices (SLS) have recently received significant attention as a promising material system for the fabrication of high performance infrared (IR) focal plane arrays with high quantum efficiency. One of the problems associated with these SLS detectors is the large dark current due to the presence of surface states. These surface states on the etched sidewalls also trap photon-generated carriers, thereby reducing the minority carrier lifetime and decreasing the detectivity. Due to the aforementioned problems, passivating the surface of InAs/(Ga)Sb superlattices is an extremely important challenge. In this paper, we report on the use of ammonium-sulfide surface treatments using two complementary techniques, namely, Picosecond Excitation Correlation (PEC) lifetime measurements and Variable Area Diode Array (VADA) dark current measurements. In the PEC measurement, the photoluminescence correlation signal is measured when two identical picosecond laser pulses that are slightly delayed from each other are incident on the sample. The rate at which the PEC signal decays with the delay is a measure of the carrier lifetime. The PEC measurements were performed on etched 430µm x 430µm mesas, which were passivated in aqueous ammonium sulfide solutions with various strengths for different times. The measurements lead to the following conclusions: (i) Surface states of mesas-etched InAs/(Ga)Sb superlattices are passivated by a factor of two. (ii) Under all three different passivation conditions, lifetimes are improved by at least 100% due to passivation. (iii) The best passivant found in our experiment is (NH$_4$)$_2$S 20% H$_2$O=1:4, which increases the lifetime by more than seven times. The surface
leakage current was investigated using VAD analysis with (NH₄)₂S 20%H₂O=1:4 passivant. Test structures containing mesa diodes with variable areas (x×400μm² to 25μm×25μm) were fabricated on InAs/GaSb superlattices. The degree that the diode inverse zero-bias resistance-area product (1/Roa) depends on perimeter/area ratio (P/A) is a measure of surface leakage current's influence. The room-temperature dark current was 7.4×10⁻¹⁰Ω·cm² at 1V, indicating state-of-the-art performance for InAs/GaSb SLS mid-IR photodiode detectors. In the future, silicon nitride thin films will be deposited on passivated diodes to achieve long-term passivation stability.

11:15 AM EE1.9
Improved Morphology and Structural Properties of InAs-GaSb Superlattices Grown on (001) GaAs Substrates by MOCVD for Mid-IR Photodetector Applications. Dai Zhang¹, Jae-Hyun Ryu¹, Russell Dupuis², Shinn Mou³, Shun Lien Chuang², Cao Feng Xu⁴ and Kuang-Chien Hsieh⁵, ¹School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia; ²Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, Illinois.

InAs layers and InAs/GaSb superlattices (SLS) were grown on GaAs buffer layer on (001) GaAs substrate by metalorganic chemical vapor deposition by using low temperature buffer layer technique. Effects of growth temperature, V/III flow ratio, growth rate, and interface group V passivation on the morphology and the structural properties of SLS are presented. We show that annealing of InAs at the InAs/GaSb interface is the origin of the nanopipes observed in the grown structures. Through optimizing the growth parameters, the formation of nanopipes is totally suppressed, and the morphological and structural properties of the SLS are significantly improved. Strong absorption in a 5-9 mm wavelength range has been observed in a 30-period SL.

11:30 AM EE1.10
Strain relaxation in compositionally graded GaAs/InAs metamorphic buffer layers. Benny Perez Rodríguez¹ and Joanna Mirecki Millunchick²,¹ Applied Physics, University of Michigan, Ann Arbor, Michigan; ²Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan.

The real-time stress evolution has been investigated during molecular beam epitaxial growth of different grading schemes of GaAs₁₋ₓSnₓ/InAs metamorphic buffer layers. The real-time stress evolution was obtained using an in situ multi-beam optical stress sensor (MOSS) measurement, and combined with detailed analysis from x-ray diffraction, transmission electron microscopy, and atomic force microscopy. The results of GaAs₁₋ₓSnₓ/InAs grading models showed less residual stress at the end of growth compared to constant composition layers of the same thickness and ending composition. The strain relaxation could be divided in three regimes: pseudomorphic, fast relaxation and saturation. Furthermore, most of the strain relaxation takes place in the first layer by the nucleation and glide of a large number of 60 degree dislocations. By the end of the first layer about 81% of the strain is relaxed. As expected, linearly graded layers provide the highest quality material. In this experiment, the Sn incorporation rate was varied from 0 to 0.63 ML/s to obtain a final composition of x=0.5. Several distinct stages of the stress-thickness evolution were observed during growth of linearly graded GaAs₁₋ₓSnₓ, buffer layer. Initially, the stress evolution increased parabolically due to the linear variation in stress. Beyond the 1500 Å an abrupt decrease in the average stress is observed, indicating the nucleation of misfit dislocations, and the average stress is driven by the bucking stress instant. Preliminary data shows that the compositional linear grading of GaAsSn, reach higher relaxation with respect to highly mismatched conventional stepwise growths, and enable threading dislocations to glide freely without dislocation-dislocation recombination interaction. A constant composition GaAs₁₋ₓSnₓ doping was grown on top of the linearly graded layer and resulted in an increase in the average compressive stress, which may be due to toughening of the surface during growth.

11:45 AM EE1.11
Structural Defect Reduction in InSb Quantum Wells Grown on GaAs (001) Substrates. Tetsuya D. Mishima, M. Edirisinghara, N. Goel and M. B. Santos; Dept. of Physics & Astronomy, University of Oklahoma, Norman, Oklahoma.

Research on InSb quantum wells (QWs) has been motivated by the possibility of mesoscopic magnetoreisators [1] and transport devices that operate in the ballistic regime [2] or exploit spin [3]. Reducing structural defects in the QW is a key to maximizing the performance of such devices. This requirement is demanding, however, because no lattice-matched, semi-insulating III-V semiconductors are available as a substrate material. In spite of its large lattice mismatch (14.6%) with InSb, GaAs has been used as a substrate material for these devices, mainly due to its low cost. Previously it was reported that micro-twins (MT) density strongly correlates with electric mobility in the QWs [4]. With the aim of decreasing defect density in InSb QWs, we grew four types of buffer layers on GaAs (001) by molecular beam epitaxy. The buffer layers consisted of, in order from the substrate, a ≈1-μm nucleation layer, a 1 μm Al₀.₉₅In₀.₅Sb layer, a 50-390-μm intermediate metamorphic layer, and a 2 μm Al₀.₉₅In₀.₅Sb layer. Different nucleation layer material (InSb or AlSb) and intermediate layer structures (Al₀.₉₅In₀.₅Sb/InSb strained-layer superlattice (SLS), InSb or Al₀.₈In₀.₂Sb interlayer) were used for these buffer layers. Al₀.₉₅In₀.₅Sb and InSb have a lattice mismatch of −0.48% and +40.48%, respectively, with respect to Al₀.₉₅In₀.₅Sb. The attached table shows the detected dislocation densities in the InSb quantum wells of the samples measured by plan-view transmission electron microscopy (TEM). The results indicate that the AlSb nucleation layer and the InSb and Al₀.₉₅In₀.₅Sb interlayers are more effective in reducing MT and TD densities than the InSb nucleation layer and the SLS: the lowest MT (1×10⁵ /cm) and TD (2×10⁶ /cm²) densities were achieved in sample C which includes the AlSb nucleation layer and InSb and Al₀.₉₅In₀.₅Sb interlayers. In the case of sample D which has an identical buffer layer structure to sample C except the Al₀.₈In₀.₂Sb interlayer, also exhibits low defect densities (1×10⁵ /cm² for MT density and 3×10⁶ /cm² for TD density). Cross-sectional TEM analysis reveals that TDs are filtered out at the interfaces of both the interlayers, regardless of the differences between them, such as the sign of the lattice mismatch with respect to Al₀.₉₅In₀.₅Sb. The Al₀.₈In₀.₂Sb interlayer reduces TD density by 73%. We will discuss detailed structural and electronic properties of the superlattice quantum wells. Solin et al., Appl. Phys. Lett. 80 (2002) 4012. [2] N. Goel et al., Physica E 21, 761 (2004). [3] A.Khodaparast et al., Phys. Rev. B 70, 155322 (2004). [4] D. Mishima et al., J. Cryst. Growth 251 (2003) 551. [5] T.T. Mishima and M.B. Santos, J. Vac. Sci. Technol. B 22, 1472 (2004).

SESSION EE2: Quantum Dot Structures and Devices
Chair: Robert Bieden and Chennupati Jagadish
Monday Afternoon, November 28, 2005
Constitution B (Sheraton)

1:30 PM *EE2.1
Electronic properties of InAs/GaAs self-assembled coupled quantum dots: Beyond the effective mass approximation. Janne Pierre Leboucq, Electrical Engineering and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois; ¹School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia.

In this talk, we discussed the electronic properties of InAs/GaAs self-assembled quantum dots (QDs) with respect to their shapes, sizes and stoichiometric compositions with emphasis on the three-dimensional strain distribution and the piezoelectric potential. Distinctive shape-dependent features in the interband optical transitions of single, vertically stacked and laterally coupled QDAs are presented. Particular attention is paid to the quantum Stark effect in single and vertically coupled lens-shaped and truncated-pyramidal QDAs. Our analysis based on an 8-band k.p strain and electric field-dependent Hamiltonian showed good agreement with various experiments.

2:00 PM *EE2.2
Tunneling Injection Quantum-Dot Laser, Shun Lien Chiang¹, Jungho Kim¹, Peter Kondratko¹, Gabriel Walter¹, Nick Holonyak¹, R. D. Heller², Xuebing Zhang³ and Russell D. Dupuis²,¹ Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; ²School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Quantum-dot (QD) lasers are expected to be the ultimate coherent semiconductor emitter with lower threshold current density, less temperature sensitivity, and higher gain than the conventional bulk semiconductors. However, carrier injection into the quantum dots has been a challenging issue due to the inhomogeneous QD size distribution and low QD density. A recently proposed quantum-well coupled quantum-dot (QW+QD) active layer improves the carrier collection by the quantum wells and subsequent tunneling injection [2] to the QDs. This “superstructure” of coupling two-dimensional (2D) QWs to a zero-dimensional (0D) QD layer provides a novel quantum system for efficient electron and hole collection and stimulated recombinations. Studies of “QW+QD superstructure” lasers show high efficiency, low threshold density, and very small linewidth enhancement factor [3]. In this talk, we investigate a "superstructure"
tunneling injection QD laser both theoretically and experimentally. The superstructure of the laser active region consists of two tensile-strain QD layers coupled to a compressive-strain QD layer [3]. Polarization-resolved amplified spontaneous emission (ASE) spectroscopy is used to extract the transverse-electric (TE) and transverse-magnetic (TM) polarization optical gain spectra at very low to high injection currents. At a low current, the ground state TE emission contribution near 680 nm is visible in polarization resolved ASE measurements because of the compressive strain nature of the QDs. A sharper TM emission at a shorter wavelength is observed by means of the heavy-hole (HH) and light-hole (LH) band edges. At the same time, the QW TM emission is increased due to the electron recombinaton to LH subband. An even higher current above 27 mA, more QD excited states are activated due to strong coupling to the QW state and subsequent laser action in purely QD states, also observed that the optical gain spectra at 294K reveal a turn-on behavior for the TE polarization, and exhibit a symmetrically narrowed gain shape near threshold, while the TM gain spectrum is nearly pinned. The TM gain pinning indicates that the carrier density in the QWs is pinned, while the injected carriers are funneled into the QDs. We will explain the physics of tunneling injection from the QW's into the QDs and how the tunneling injection affects the polarization resolved optical gain spectra as the injection level increases. [1] G. Walter, T. Chung, N. Holonyak Jr., Appl. Phys. Lett. 80, 1126 (2002), [2] S. L. Chmung and N. Holonyak, Jr., Appl. Phys. Lett. 80, 1270 (2002). [3] G. Walter and J. Thee, N. Holonyak, R. D. Heller, X. B. Zhang and R. D. Dupuis, Appl. Phys. Lett. 84, 660 (2004).

3:30 PM EE2.3 Scaling Quantum Dot Microcavities: From Quantum Dot VCSELs to Single QD Sources. Dennis Deppe, Jaemin Ahn, Dingyuan Lu, Sabine Freisem, Andreas Muller and C. K. Shih; Electrical Engineering, UT Austin, Austin, Texas.

Quantum dot (QD) nanophotonics combines the scaling of semiconductor photon and electron confinement needed to modify light-matter interaction. In larger cavity lasers, the QD active material can lead to very low transparency current density, temperature insensitive gain and greatly improved optical stability. The QD-vertical cavity surface-emitting laser (VCSEL) in some ways bridges the gap between large cavity lasers and microcavities, by providing a microcavity that can be easily planar and allows scaling of the transverse mode size down to sufficiently small dimensions to observe modified light-matter interaction through the Purcell effect. Planar microcavities were first used to demonstrate the Purcell effect for self-organized QDs, and the QD spontaneous control has since been increased using etched pillar, oxide-apertured, photonic crystal defect, and whispering gallery mode microcavities. More recently, strong coupling has been demonstrated in QD photonic crystal defect and etched pillar microcavities. Laser emission in photonic crystal defect, and, microdisk microcavities have also been demonstrated using QD ensemble active regions. Although QD nanophotonics could lead to new technologies based on spontaneous quantum light sources, ultra low noise, high-speed QD lasers, present semiconductor microcavities have serious drawbacks for practical applications. Perhaps most daunting are the fragility and poor thermal conductivity that result from thin film photonic crystals, whispering gallery microdisks, or etched pillars.

Oxide-confinement suffers poor controllability, making it impractical. Electrical injection in these microcavities is also difficult, if not impossible, especially because of the thin layers. In this talk we will present analysis and experimental data on a new type of all-epitaxial microcavity that uses semiconductor mirrors similar to a VCSEL, and enables scaling of the VCSEL active region into the single-QD regime. This microcavity technology uses an intracavity mesa that contains one or more QD epitaxial microcavities, photonic crystal photonic crystal defect, and, microdisk microcavities.

We have demonstrated high Q cavities in which the Q > 15,000 to obtain lasing even in single layer QD all-epitaxial VCSELs. The lasing comes from an identification of single QD emission, including exciton, bi-exciton, and high energy excited state transitions from the single QD. The Purcell effect is apparent in these microcavities, both in the blue-shift in the cavity resonance with decreasing mode volume and an increased spontaneous emission efficiency with reducing cavity volume. In this talk we will describe the applications of these microcavities to both low threshold VCSELs and single photon sources, and provide details of the QD growth and fabrication.

4:00 PM EE2.4 Structural, Composition and Optoelectronic Properties of Small Pyrite Quantum Semiconductor Quantum Dots of Ga and In Atoms with As. Liudmila A Poghar, Alan T. Yeates, Frank Smulowicz and William C. Mitchell; 1Chemistry, Western Kentucky University, Bowling Green, Kentucky; 2Materials and Manufacturing Directorate, Air Force Research Lab, Wright-Patterson AFB, Ohio. Nucleation and growth of small atomic clusters in confinement are dramatically affected by the presence of the environment. This indicates, that the growth conditions can be manipulated with to obtain sub-nanoscale heterostructure (SNHS) units and SNHSS with pre-designed physical, and in particular, optoelectronic, properties. In this study several pyramidal clusters of of Ga and In atoms with As are synthesized and investigated in the framework of the Hartree-Fock (HF)-based, multi configuration self consistent field method (MCSCF). Some of the clusters have been pre-designed so that the cluster form, stoichiometry and atomic bond lengths reflect the influence of the cluster growth environment. The quantum confinement effects on the properties of the clusters can be manipulated up to an order of magnitude by manipulations with the confinement conditions and stoichiometry of the clusters. For all of the studied cases the obtained numerical values of the OTE decrease with an increase in cluster size, in agreement with trends reported in literature for small atomic clusters. The stoichiometry of the synthesized stable clusters is in agreement with that of somewhat larger pyramidal clusters that were recently developed experimentally. While direct comparison of the electronic properties of the virtually synthesized clusters with those of the experimental clusters is not possible due to a substantial difference in the cluster size, scaling of the ELs properties leads to a conclusion that the obtained theoretical results for the OTEs are in agreement with available experimental data. The results of this work indicate that for the studied pyramidal clusters the bond lengths and crucial parameters of the ELs, which determine the ELs values of the electronic energy levels are determined primarily by the chemical nature of the atoms constituting the clusters. In the case of the OTEs, all parameters and structural details are equally important. Possible mechanisms of optical absorption and lasing such clusters have also been discussed.

4:15 PM EE2.5 Interdiffused InGaAsP Quantum Dots Lasers on GaAs by Metal Organic Chemical Vapor Deposition. Ronald Ariwibowo Arifin, Nam-Heon Kim², Luke James Mawst² and Nelson Tansu²; 1Center for Optical Technologies, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania; ²Reed Center for Photonics, Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin.

Self-assembled InGaAs quantum dot (QD) lasers on GaAs grown by metal organic chemical vapor deposition (MOCVD) have a natural peak emission wavelength of around 1100-1200 nm due to the MOCVD growth leading to a lack of chirp, the emitting 980-nm MOCVD-grown InGaAs QD lasers for EDFA pump lasers. In this work, a promising method to blue-shift the emission wavelength of MOCVD-grown InGaAs QD lasers by using InGaP barriers, is demonstrated. The blue-shifted post-grow rapid thermal-annealed (RTA) interdiffusion technique. The RTA interdiffusion of the InGaAs QD with the P-containing barriers (GaAsP or InGaP) results in interdiffused InGaAsQD GaAsP, with improved transition energy. During annealing, the interdiffused InGaAsP QD is formed by 1) incorporation of P from the GaAsP or InGaP barriers into the InGaAs QD active region and 2) out-diffusion of In from the InGaAs QD to the barrier region, resulting in significant blue-shift of the peak emission wavelength from 1100-nm regime to 1000-nm regime. Our studies include the photoluminescence (PL) measurements of the RTA-interdiffused InGaAsP QD, and the laser device characteristics of interdiffused InGaAsQDs. The QD laser diodes embedded in a double InGaAsP waveguide laser grew in the QD/caps structure, forming P-containing barriers of GaAsP with various P contents. The InGaAs QD lasers with GaAs barriers are also fabricated for comparison purpose. Room- and low-temperature (77K) PL measurements are conducted on all sample lower QDs with GaAsP barriers grown at 650-750°C for 300 sec. By annealing the InGaAs QD by using GaAsP as the upper QD barriers grown at 700°C for 300 sec, significant blue-shift in the PL up to 84-nm is observed with reduced PL full-width half max (FWHM) by 11 nm/eV. The room- and low-temperature peak emission wavelengths for the interdiffused InGaAsQD P with GaAsP barriers (at 700°C for 300 sec) are measured at 1050 nm and 985 nm, respectively, which are considerably sharper than those of as-grown samples (1134 nm and 1075 nm, respectively). The electro-optical properties of the InGaAsP in the annealed QD samples qualitatively can be attributed to the reduction in the size distribution of the interdiffused QDs, after annealing. Diode lasers devices based on 2-stacked InGaAs QD with GaAsP barriers are fabricated and 2-stacked InGaAs QD lasers on GaAsP barriers are fabricated. For 2-stacked QD as-cleaved laser annealed at
700°C for 200 sec, reasonably low threshold current density of 202 A/cm² with emission wavelength at 1075 nm was realized under room temperature operation. The 3-stacked interdiffused QD as- cleaved laser devices demonstrate threshold current density of 250-288 A/cm² with emission wavelength at 1040 nm at room temperature operation. Experiments utilizing InGaAs QD surrounded by InGaP barriers grown on GaAs substrate will also be conducted to further investigate the P-species incorporation into the QD gain media, and its impact on laser device characteristics.

A Lagrangian formulation for the valence bands of bulk zinc blende and wurtzite compound semiconductors provides a direct approach to determine the conduction band order of magnitude in the valence band for the two-dimensional electron states in the multiband k · ϖ description of electronic states, in the envelope function approximation. The current continuity condition is obtained through a gauge-variation on the Lagrangian. The principle of least action together with the discretization of the action integral naturally leads into a finite element approach for the modeling and simulation of the multiband Schrödinger equations. Being a variational method, the wavefunctions and energy eigenvalues can be systematically improved with quadratic convergence. By including the Poisson Lagrangian a self-consistent treatment of the Schrödinger - Poisson band-bending in arbitrarily doped structures is obtained. Numerical examples are presented for the valence band effective masses for quantum wells and superlattices. We have also coupled the finite element method with layer parameter optimizations to design heterostructures for lasers emitting at given wavelengths. It is in this sense that wavefunction engineering goes beyond the notion of bandgap engineering in providing the means for optimizing wavefunction localization in layers, picking layer thicknesses, enhancing optical matrix elements and laser gain. This work was supported by the AFOSR under Grant F49620-03-1-0520 and by DARPA Spinoff program under ONR Grant N00014-00-1-0591.

SESSION EE3: Poster Session: Progress in Semiconductor Materials V - Quantum Dots, Growth and Magnetism
Monday Evening, November 28, 2005
8:00 PM
Exhibition Hall D (Hynes)

EE3.1 Effect of strain compensation on multi-stacking of InAs self-assembled quantum dots embedded in GaNAs layers. Ryuji Oshina, Takayuki Hashimoto, Hidemi Shigekawa and Yoshitaka Okada; Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Recently, high-quality long wavelength quantum dot (QD) devices fabricated on cost-effective GaNAs substrates in a high demand for applications to optical fiber communication systems as well as high-efficiency solar cells for solar cell applications. One of the challenging problems is to establish a stacking technique of self-assembled QD layers in order to increase the total dot density. If the host material used for burying the QDs is the same as that of substrate, then QDs in a stacked configuration are generally accompanied by an increase of QD size from one layer to the next layer owing to a build up of internal lattice strain with increasing number of stacking. In this work, we study multi-stacked InAs self-assembled QDs embedded in GaNAs strain compensating layers on GaAs (001) substrates grown by atomic-H assisted RF molecular beam epitaxy (H-MBE). Since the lattice constant of GaNAs with diluted nitrogen composition of ~1% is smaller than GaAs, compressive strain induced in InAs QDs layers can be compensated by capping with GaNAs layers which induce the opposite tensile strain. Therefore, one can expect multi-stacking of InAs QDs structures with improved size uniformity and optical properties including the long wavelength emission. First, we performed high-resolution x-ray diffraction (HRXRD) measurements with symmetric scans around (004) reflection in omega-2theta geometry in order to measure the strain compensation effect of GaNAs SCLs. After optimization of both N composition and thickness of GaNAs SCLs, we were successful in obtaining high quality 20 multi-layer stacking of InAs QD structures without coalescence of QDs or generation of dislocations. Total dot density of 1x10^12 /cm² was obtained based on atomic force microscopy measurements.

EE3.2 Enhanced optical interaction of quantum dots in ultra-small mode volume dielectric optical microcavities. Jacob Thomas Robinson, Christina Manolatou, Long Chen and Michal Lipson; Cornell University, Ithaca, New York.

The enhanced interaction between light and matter in optical microcavities is the focus of much research both for potential applications in active photonic devices, as well as experimental studies of these interactions. Many of these photonic devices including sensors, switches, and modulators rely on such light-matter interactions as two photon absorption (TPA) and an intensity-dependent refractive index. Increased interaction in gain material such as quantum dots has allowed the development of low-threshold microlasers. Recently, improved light matter interaction between quantum dots and optical microcavities has furthered the study of cavity quantum electrodynamic (cQED) effects such as increased spontaneous emission rate and strong coupling. The effectiveness of these cavities for enhanced optical interaction is often measured by the ratio of the cavity quality factor (Q) to the effective volume of the electric field in the resonant mode (V_eff). While there has been much improvement in high Q cavities, progress has been limited by the development of techniques for decreasing V_eff below (λ/2n)^3 (where λ is the wavelength of light in vacuum, and n is the refractive index of the material). This decrease in V_eff is particularly important for applications such as room-temperature quantum dot lasers where once the resonant linewidth of the cavity falls below that of the emitting material (as is the case for quantum dots in high Q cavities) the only means for decreasing the lasing threshold is the reduction of V_eff. In this work, we demonstrate a method for decreasing V_eff to the order of 10^{-2} (λ/2n)^3 by introducing a nanoscale slot in the center of the resonant cavity. In semiconductor materials, this can result in a decrease in the lasing threshold and the spontaneous emission lifetime by nearly two orders of magnitude. The design and fabrication of these cavities is detailed and the results are presented. This technique allows for the creation of low-threshold room-temperature quantum dot lasers and further cQED experiments in integrated photonic microcavities.

EE3.3 InAs Growth Mechanisms on Low Index GaAs Orientations in Metalorganic Vapor Phase Epitaxy. Anish A Khedkar1, G. Suryanarayanan2, M. Rathi1, J. Webb1, S. E. Babcock1 and T. F. Kuech1,2; 1Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin; 2Materials Science Program, University of Wisconsin, Madison, Wisconsin; 3Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin.

InAs is a narrow band gap semiconductor belonging to the 6.1A family, with applications in high-speed electronic devices and infrared optoelectronics. Due to the lack of lattice-matched, high quality substrates, InAs films are often deposited on semi-insulating (100) GaAs. Large lattice mismatch between two materials results in a high density of misfit-related defects in InAs films grown directly on GaAs. Growth on non-(100) GaAs substrates, as well as the use of the lateral epitaxial overgrowth (LEO) technique have been used to alter the growth morphology and reduce the defect density [Appl. Phys. Lett. 83 (2003) 1977]. The development of InAs surface morphology, strain relaxation and resulting microstructure is also reported to be dependent on the orientation of the growth plane [Appl. Phys. Lett. 69 (1996) 776]. The InAs growth mechanisms on alternative low index planes could therefore be important to new device structures. The InAs MOVPE growth was studied on six GaAs substrate orientations: (100), (111)A, (111)B, (110), (211)A and (211)B. The growth was carried out in a horizontal MOVPE reactor, operated at 780 °C. The effects of growth temperature and the trimmed indium and arsine gas phase concentrations on InAs growth rate were studied over a broad range of values. InAs growth rate increased by ~50% for (100) planes between 400 and 800 °C, whereas growth rate on other planes increased by ~30% over the same temperature range. The slow increase in growth rate with temperature indicated a reactant-transport limited growth mechanism. The highest growth rate was observed on (100) plane, whereas the growth was slowest on (211)B plane. The growth rate increased linearly with TMIn concentration at a constant arsine flux, though the rate of increase depended on the orientation of growth plane. The growth rate stayed almost constant with variation in arsine concentration, indicating a single rate-limiting step of TMIn. The ordering of growth rate with surface orientation agreed with the observed sidewall facets in LEO, which are determined by the slow growth crystal planes. The surface morphology of InAs films as determined by atomic force microscopy, indicated a strong dependence of the surface roughness on growth parameters. The MOVPE growth process was simulated by developing a two-dimensional computational fluid dynamics (CFD) model of the reactor. The model included detailed flows and heat transfer boundary conditions. Radiative heat transfer and parasitic reactions in the reactor walls were included in
the model to accurately predict the measured temperature profiles and growth rate, respectively. The kinetics of multiple gas phase and surface reactions were included in the model to predict the growth rate. Sensitivity analysis of the model is underway to determine the kinetically important pathways and identify the underlying growth mechanism of InAs for different growth planes.

EES.4 Fabrication of InAs quantum dot memory by selective area MOVPE. Devraj Nataraj, Noboru Goka, Junichi Motohisa and Takashi Fukui, School of Material Science and Engineering, University of Technology, Research Center for Integrated Quantum Electronics (RCIQE), Hokkaido University, Sapporo, Japan.

The quantum dot memory devices (QDM) depend on the discrete emission/capture of electrons for its functioning and not on the average behavior of hundreds of thousands of electrons, as is the case in today’s flash memory devices. Large number of reports is available in silicon QDM, addressing the fabrication methods, temperature operation, single electron charging effect etc. However, only limited reports are available in InAs QDM devices, and most of them involved several hundreds/thousands of QDs. In the present work, we attempted to fabricate few InAs QDs coupled to GaAs narrow wire channel by selective area metalorganic vapor phase epitaxy (SA-MOVPE) and investigated its operation in detail. We utilized a natural width reduction mechanism associated with self-limited mechanism growth of SA-MOVPE to fabricate narrow channel and form few InAs dots on the wire structure. Firstly, wire-like mask openings were formed along [110] direction on SiO2 masked (001) GaAs substrate using electron-beam lithography and wet chemical etching. In this opening area, AlGaAs/GaAs modulation doped double heterostructures, InAs QDs layer and GaAs capping layer were grown by SA-MOVPE method. Growth of GaAs layer on SiO2 masked (001) substrates is self-limited and therefore the top (001) facet width of our device was narrower than the electron beam lithography defined bottom opening. After the completion of growth, ohmic contact for the source and drain were formed by the lift-off method. Next, Schottky contact gate to control the 2DEG channel and store/release electrons in QDs was formed using lift-off method. The drain current measurement (Ids-Vgs) by sweeping the gate voltage from +1V to -1V shows the maximum up to a temperature of 180K. A clockwise hysteresis with a threshold voltage difference value between the reverse and the forward scanning was 165mV at 20K. In scanning electron microscope observation of the wire structure without GaAs capping layer, InAs QDs on the wire structure had a size distribution of 10-30 nm and with an average density of 25 dots per 0.1 μm2. In comparison with theoretical estimation, the number of electron in each QD was about six. In real time measurement, the charging and erasing state of our memory device was found to be discriminated for more than 5 minutes at 20 K and about 70 seconds at 77 K. These behaviors might be due to the increase in the thermal energy assisted carrier emission from QDs. Consequently, we have successfully fabricated InAs narrow wire channel coupled InAs quantum dot memory device utilized by SA-MOVPE and obtained memory effect originated from few InAs quantum dots.

EES.5 Geometrical Effects on the Electronic Dynamics in Coupled Quantum Dots. Hang Yecdic Ramirez,1 Angela Stella Camacho1 and Lok C. Lew Yan Voon1,2,3 1Physics, Universidad de Los Andes, Bogota, C/merca, Bogota, Colombia; 2Universidad de Los Andes, Bogota, Colombia; 3Physics, Wright State University, Dayton, Ohio.

Minibands of electronic states appear as a consequence of the interaction between neighbor nanostructures. It can be viewed as the result of hybridization of states of the non-interacting components. Such new states exhibit anticrossing behavior when the states of the individual components are in resonance, which is a sign of coupling. We have studied the electronic transitions and electronic coupling tunable by geometrical parameters in range from radio to terahertz frequencies. The transitions stimulated by external fields, have interesting properties such as coherent emission of radiation, and longer life times of excited states compared with those of quantum wells. These features make coupled quantum dots good options for charge qubits in developing of hardware for quantum computation.

EES.6 Luminescence of Colloidal Quantum Dots Integrated in Solid Matrices. Jennifer Godwin Pagan,1,2 Edward B. Stokes3,4, Michael T. Ahrens5, Rimmri Patel6, Biermann A. Martin1,2, Mohamad-Ali Hassan2,6 and Mark O’Stein1,1,2,3 Dot Metrics Technologies, Charlotte, North Carolina, USA; 1University of North Carolina at Charlotte, Charlotte, North Carolina; 2Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina; 3Veece Process Integration Center, Saint Paul, Minnesota.

To date, colloidal quantum dot applications overwhelmingly exist with quantum dots suspended in liquid solution. However, the precise control of colloidal quantum dots has expanded, moving from a predominantly biological arena into electronic device applications, where the quantum dots are no longer used in solution, but rather are integrated into a solid matrix of device fabrication. The precise control of colloidal quantum dot materials for optoelectronic device applications, it is necessary to understand matrix and temperature effects on the optoelectronic properties of quantum dots. In particular, photoluminescence spectra of quantum dots are affected by matrix effects and temperature. For the results are results of CdSe/ZnS core/shell quantum dots which are integrated into semiconductor as well as insulating materials. In one set of experiments, quantum dots were deposited onto GaN substrates and overgrown, via low temperature MBE, with GaN. In another, a sputterer was used to deposit SiO2 over the quantum dots. The luminescence of both types of quantum dots is observed at various temperatures.

EES.7 Spatial Bandgap Tuning in Long Wavelength InAs Quantum Dot-in-Well Laser Structure. Yang Wang,1 Clara Evgenia Dimas,1 Hory Susanto Djie1, Boon Siew Ooi1,2, Gerard Dang2 and Wayne Chang2,1 Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania; 2AMSRD-ARL-SE-EM, U.S. Army Research Laboratory, Adelphi, Maryland.

Self-assembled InAs quantum dots (QDs) grown on InP substrate (lattice mismatch of ~3.2%) has been gaining much attention due to their potential applications in the 1.3-1.6 μm wavelength region for optical telecommunications. Here, we report on how the emission wavelength of this material system at the epitaxial growth levels remains to be a challenging issue. Here, we employed the postgrowth impurity-free vacancy diffusion technique to significantly tuned the bandgap of the InAs quantum dots. The InAs quantum dots structure grown on (100) InP substrate. The dot-in-well configuration is adopted here to improve the carrier collection rate and to suppress the thermal escape of the carriers. The 1 nm long gain-guided Fabry-Perot lasers fabricated were useful. The material give a lasing wavelength of ~1.62 μm at room temperature. A blue-shift up to 220m with a significant decrease in the full width at half maximum (FWHM) has been observed after thermal annealing. The blue-shift and the FWHM narrowing effects were observed to be more pronounced for the group III atomic composition interdiffusion, and the reduction in composition and size fluctuations of QDs, respectively. Compared to the typical structure of InAs QDs embedded in the InP matrix [1], the temperature stability of the InAs dot-in-well structure is improved by over 50°C. Spatial control of the bandgap shifts has been achieved using SiO2 and Si3N4 as annealing masks. A differential shift as large as 84 nm has been observed from samples capped with Si3N4 and SiO2 followed by a rapid thermal annealing step at 750 °C for 30s. In contrast to most reported results in other material systems, we found that Si3N4 capped samples produce a larger energy shift than the SiO2 capped samples. Similar result has also been observed from the annealed AlInGaQDs quantum-well samples (λ′ = 1.1 μm) that have similar wafer structure but without the presence of the InAs QDs in the active region. The detailed mechanism of this intermixing process is still under investigation. However, from theoretical calculations, we postulate that the intermixing of the material system might be governed by different interdiffusion rates of group III atoms in the Al-quantum. This high spatial bandgap modification process will be advantageous for postgrowth on-wafer emission wavelength tuning, as well as for the fabrication of photonic integrated circuits using this material system. [1] K. C. Chia, S. J. Chu, S. Tripathy, and J. R. Dong, Appl. Phys. Lett. 86, 051905 (2005).

EES.8 Material Synthesis and Infrared Optical Properties of Transition Metal Doped Binary and Ternary II-VI Semiconductors. Eliz Nyens,1 Uwe Honmerich1, Ivy K. Jones1, Sue N. Trivedi2 and Ali Reza Ghasemi1 1Dow University, Hampton, Virginia; 2Bomcor Inc., Baltimore, Maryland; 3Elizabeth City State University, Elizabeth City, North Carolina.

We report on the material preparation and optical characterization of transition metal (TM) doped binary and ternary II-VI chalcogenides for applications in mid-infrared (MIR) light source development. Cr+2 doped II-VI semiconductors (ZnSe, ZnS, CdSe, CdMnTe) have received world-wide attention for MIR solid-state laser development in the fiber region. Lasing at ~2 μm has been demonstrated for Fe doped ZnSe, but only at low-temperatures. TM doped II-VI thin films are also currently being studied for the development of broadly tunable mid-infrared lasers pumped through electrical carrier-injection or optical excitation. In this paper, we present results of the material synthesis and IR spectroscopy of several TM doped ternary cadmium chalcogenides including CdMnTe, CdZnTe, CdMgTe, CdZrTe, CdBrTe, and CdFeSe. Following the synthesis, purification, and
Bridgman crystal growth of the investigated host materials, TM doping was performed through a thermal diffusion process. The TM doping process involved the technique of using appropriate dopant sources (e.g., metal chloride) and selected temperatures and time periods. The TM ions were also observed to have a significant influence on the magnetic properties of the samples. TheTEX 9

InGaAs/InGaAsP Quantum-Well Engineering for Multiple Regrowth MOVPE Process. H. J. Leu1, E. Gini2, R. Scloso3, F. Robin3 and H. Jaeckel4; 1Electronics Laboratory, ETH Zurich, Zurich, Switzerland; 2Frist Center for Micro and Nanoscience, ETH Zurich, Zurich, Switzerland.

Mode locked laser diodes (MLLDs) are key devices for all-optical Tbit/s communication networks. We have proposed the use of a fast recovering absorber based on an uni-travelling-carrier structure (UTC) to achieve pulsewidths below 1 ps. This requires the integration of three separate laser stacks for: the absorber, unstrained InGaAs/InGaAsP multiple quantum well (MQW) gain and passive waveguide. We propose a butt-coupling process that involves up to 5 MOVPE regrowths for each structure to optimize the internal reflections at the interfaces. Because the MQW structure is the laser stack most sensitive to planarization issues, it is grown first onto the blank wafer. Due to the repeated thermal cycling of the QW up to 630°C during the subsequent process, we have to account for the decrease of GaAs based on quantum intermixing. The MQW emission wavelengths has to be matched with the UTC absorption spectrum with an accuracy of better than 5 nm. Fabry-Perot laser diodes processed on each MLLD-Wafer were used to probe the gain characteristics, as they match the relevant output wavelength of our MLLDs and undergo exactly the same growth conditions not provided by simple thermal cycling of as-grown MQWs. Therefore, the laser spectral peak was compared with the PL-peak before and after the wafers were subjected to quantum intermixing. The blue shift between 0 and 45 nm depending on cumulative heating time over all regrowth steps (0-3h) and the initial photoluminescence (PL)-peak wavelength. The blue shift is explained in terms of structural change during regrowth at the interface between the InGaAs wells and InGaAsP barriers due to group V diffusion. We therefore compute an effective width for the QWs as grown and after the regrowth steps by solving the one-dimensional Schroedinger equation to get the conduction- and valence band energy states and transition wavelength for various QW widths. Assuming that both the PL-peak and the spectral gain peak correspond to the transition between ground states in the conduction and valence bands, we can assign a corresponding quantum well transition to PL and spectral gain peaks. The PL wavelength shift is highly dependent on the initial PL-peak, as the interband transition energy is not linearly dependent on the quantum well width. Initial PL peaks of 1555/1574 nm resulted in wavelength shifts of 0.5/0.7 nm for the initial PL-peak and the spectral gain peak, respectively. This corresponds to an effective quantum-well width shrinkage of 25 A for both samples. All five investigated wafers show a linear relationship between the effective quantum well width and the cumulative heating time of 8.3 A/h at a growth temperature of 630°C. Therefore knowing the cumulative regrowth time we can design the initial quantum-well thickness that yields the targeted emitting wavelength. In conclusion, we have developed a new use method to account for the quantum well intermixing in regrowth processes.

Maximum Entropy Mobility Spectrum Analysis of HgCdTe Heterostructures. Gwladys Perrais, Jerome Meilhan, Olivier Gravrand, Jacques Baylet, Philippe Baland, and Johan Rothman. LETI/DOPT, CEA, Grenoble, France.

We report on Mobility Spectrum Analysis, of HgCdTe using a new Maximum Entropy, ME, algorithm. MSA was proposed by Beck to estimate carrier properties in mixed conductivity systems, by adjusting a set of parameters that model the electrical field dependence of the conductivity tensor. MSA is well adapted to determine the carrier properties in narrow gap semi-conductors, but also in heterostructures used in the third generation of IVAs, for example monolayer detectors. Compared to other approaches, such as multi carrier fits, MSA presents the advantage that it does not need any hypothesis on the number of carriers present in the sample. Maximum Entropy Mobility Spectrum Analysis, MESSA has been shown to be a viable alternative to the more commonly used Quantitative Mobility Spectrum Analysis, QMSA. The use of maximum entropy algorithms for MSA is more philosophically satisfying than the QMSA, as the MEMSA does not model the information of some other method or theory and is well adapted to estimate a large set of parameters (the mobility spectrum), from a reduced set of experimental parameters (the Hall data). The QMSA on the other hand, is based on least square minimisation and is working thanks to a good starting spectrum, the Beck spectrum and a clever algorithm. Our MEMSA algorithm uses Lagrange multipliers to maximise the entropy and neglects random experimental noise, as the algorithm used by Kiatagolchian et al. In difference to previous results, we separate the contributions of the two contacts to the conductivity tensor. This approach should be advantageous in mixed conductivity systems with very small Hall coefficients. Mobility Spectrum Analysis has been performed on synthetic data and experimental data using both the MEMSA and the Lagrangian commercial QMSA software. The capacity of each algorithm has been tested on synthetic data. For a synthetic data set with five contributions to the conductivity, MEMSA gives a more accurate estimate of the main contributions to the conductivity, which shows a higher sensitivity to estimate small contributions to the conductivity in mixed conductivity systems. Mobility spectrum estimations on experimental data will be reported for single epilayers of HgCdTe and for more complex heterostructures used in multilayer detectors.

Quantum-well Intermixing using Ge-doped Sol-gel Derived Silica Encapsulant Layer. Hery Susanto Dije1, Boon-Siew Ooi1, Charles K. F. Ho2, Ting Mei2, Kantisara Pita2, Nam-Quoc Ngo3; 1Center for Optical and Electronic Engineering, Lehigh University, Bethlehem, Pennsylvania; 2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.

Post-growth bandgap modification through quantum-well intermixing (QWI) has generated considerable interest due to its simplicity and effectiveness for photonics integrated circuits through the use of low-cost encapsulant techniques. The sol-gel method is well known that the sol-gel method allows the synthesis of stoichiometric-dielectric materials, in which the matrix material can be doped with a wide range of elements and concentration homogeneously in a simple and inexpensive way [1]. Here, we investigate the role of intermixing using the sol-gel derived silica encapsulant layer doped with Germanium to trim the bandgap energy of quantum-well at postgrowth level. The intermixing is reproducibly enhanced in InGaAs/InGaAsP quantum well laser structure using the Ge-doped sol-gel silica encapsulant layer after the subsequent annealing. A bandgap shift of between 0.64 nm has been observed from 10% Ge-doped silica capped sample at an annealing temperature of 630°C with effective intermixing sublimation using the e-beam evaporated SiO2 layer. Using our model [2], a nearly identical activation energy of 1.7±0.5 eV intuitively implies that the dissimilarity in interdiffusion behavior between 0% and 10% Ge-doped silica capped sample is only attributed to the difference in the number of Ge atoms at the incidence of the intermixing process. To confirm the postulation, we further analyze the intermixing enhancement using the multiple-width GaAs/AlGaAs quantum-well probe structure allowing the intermixing process identification related to the injection of Ga vacancies. We found that the enhanced bandgap blue-shift as the increase in Ge content in the sol-gel derived silica cap is related to Ga outdiffusion to encasulant layer, and V_Ga, in-diffuses to the quantum-well area and promote the local intermixing. The above compositional dependence can be explained by Ge incorporation in the sol-gel cap reduces the mismatch of thermal expansion coefficients between the quantum-well structure and film, efficiently retaining preferential vacancies, and therefore enhancing the interdiffusion rate between the Ge-doped silica and the encapsulant layer. The intermixed material retains a good surface morphology and preserves the optical quality as evidenced by the absence of any detectable photoluminescence linewidth broadening. With total annealing temperature and Ge incorporation, the Ge-doped sol-gel enhanced intermixing has the potential to offer unique impurity-free interference pass structures and low-temperature annealing activation energy as high as 0.8-1 eV, which can be used to the effective change of sol-gel based homoepitaxial growth of Ge-doped sol-gel silicon.
M. Zavada; 1 Hampton University, Hampton, Virginia; 2Brimrose Corporation of America, Baltimore, Virginia; 3Elizabeth City State University, Elizabeth City, North Carolina; 4US Army Research Office, Durham, North Carolina.

Lead halides (PbI₂ and PbBr₂) have emerged as promising materials for room-temperature nuclear radiation detectors. PbI₂ and PbBr₂ are considered wide-gap semiconductors with gap energies of ~2.2 eV and ~2.5 eV, respectively. The high atomic number of the cation and the wide bandgap make these materials attractive candidates for scintillator or calorimeter detector applications. Currently, exploring the purification and rare earth doping of PbI₂ and PbBr₂ for possible applications as infrared light emitters under optical and electrical pumping. Commercially available 5N purity PbI₂ and PbBr₂ were further purified by repeated solvent hot plate and vacuum sublimation, allowing for the preparation of PbI₂ with ~1 wt% of PbBr₂ doped with rare earth ions. The PbI₂ powder was then mixed with rare earth halides and the PbI₂-PbBr₂-rare earth halide compounds were ground into fine powder and mixed with PbI₂-PbBr₂, the mixture was then pressed into pellets and the pellets were subsequently annealed at high temperature for several days. The resulting PbI₂-PbBr₂-rare earth halide compounds were characterized by X-ray diffraction, optical absorption spectroscopy, and photoluminescence spectroscopy. The results showed that the rare earth ions were successfully incorporated into the PbI₂-PbBr₂ host lattice, and the incorporation of rare earth ions into the PbI₂-PbBr₂ host lattice significantly enhances the optical and electronic properties of the materials. These results suggest that PbI₂-PbBr₂-rare earth halide compounds could have potential applications in optical and electronic devices.

EE3.14 Epitaxial growth and characterization of BP(100) on Si(100) substrate. Tomohiko Takahashi1, Suzuko Nishimura2, Tomoyuki Shigematsu3, Satoru Matsuhashi4, and Kazutaka Horiuchi1

1Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan; 2Materials Science and Technologies, Shonan Institute of Technology, Fujisawa, Japan.

Boron phosphide (BP) is one of III-V semiconductors having the zinc-blende structure. Recently, the technologies of c-GaN and GaN on Si substrate have attracted much attention of many researchers. BP(100) is one of the most suitable materials for replacing the c-GaN(100) and Si(100) substrate. BP and c-GaN have the same crystal structure and the lattice mismatch is about 0.7%. This value is relatively lower compared to GaN(about 20%) and 3C-SiC(about 3.3%) which is mainly used for substrate to study c-GaN growth. The growth of BP layer was carried out by MOVCD on Si(100) substrate of 2 inch diameter. As Si substrates the both p-type and n-type were used with 0.01-0.01 ohm-cm. TEA and TBP were used for the gas sources of Boron and Phosphorus, respectively in H₂ gas carrier. Before beginning the high temperature layer growth, the low temperature layer was deposited around 450°C. The growth rate was over 1μm/hour with no troubles such as the bending or cracking. In addition, the thickness of epitaxial layer was uniform. The deviation was within 5% at 1.24μm thickness. The x-ray diffraction showed that the peaks of BP(200) and BP(400). This result suggests that the BP epitaxial layer growth was inherited the crystal orientation from Si(100) substrate. Under the above growth conditions, there were no distinct peaks except substrate diffractions. In the case of B-rich conditions, the other type of Boron phosphide were appeared. It has been found that B₁ₓP₁₋ₓ having the rhombohedral crystal structure is mixed in the layer. Near the interface between BP layer and Si substrate, TEM images give the some defects like dislocations. The x-ray measurement indicates that the conduction type of every BP films grown on the both n-Si and p-Si substrates were n-type without impurity doping, and the mobility and carrier concentrations were typically 350cm²/Vs and 10¹⁰cm⁻²⁻³ (on n-Si) and 65cm²/Vs and 10¹⁰cm⁻²⁻³ (p-type).

EE3.15 The Development of Morphology and Onset of Crystal Tilt during Island Growth of InAs Films Deposited on Unmodified and Mask-Patterned (100) GaAs Substrates. Ganesan Suryanarayanan1, Anish A. Khandekar1, Thomas F. Kuech2,3, and Susan E. Babcock1,2

1Materials Science Program, University of Wisconsin - Madison, Madison, Wisconsin; 2Department of Chemical Engineering, University of Wisconsin - Madison, Madison, Wisconsin; 3Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin.

The use of semi-insulating GaAs as a substrate of choice for novel devices containing the low band gap semiconductors InAs, GaSb and AlSb drives interest in developing novel substrates and growth processes that circumvent defects induced by the 7% miscut, Nₐ between the film and substrate. InAs films grown on unmodified GaAs substrates under conditions that favor low nucleation and/or high growth rates tend to have high threading dislocation densities and also show a systematic tilt of the InAs grains of Nₐ. This tilt is seen in one of six preferred directions relative to the GaAs substrate. The defect microstructure and crystal tilt for InAs grown under the same reaction conditions that promote profuse crystal tilt are altered substantially when a laterally patterned method on mask-patterned stripe-shaped windows is used to grow the film, provided that the windows are < 1μm in width. Not only do a substantial reduction in dislocation density and a complete change in dislocation arrangements result, but also a dependence in which all of the island tilt is extrinsic to the InAs is crystallographically aligned with the GaAs substrate. The purposes of this study were to explore the origins of the tilt, to uncover the chemical, physical and topological conditions that favor tilt amelioration and to understand the mechanism(s) by which tilt occurs and can be inhibited. To do so, the island morphology and localized crystal orientation within isolated islands of various sizes in pre-coalesced InAs films were studied. The island morphology was determined from AFM, SEM images. Backscattered-electron Kikuchi diffraction pattern (BEKP) analysis and BEKP-based orientation imaging microscopy (OIM) were used to detect and measure local tilt within individual islands. The combined analyses for islands grown on unmodified GaAs wafers showed that the islands are equi-axed and aligned with the substrate during the initial stages of growth. The smallest islands around 300-500 nm are pyramidal with (111) facets whereas the micro-size islands show combination of (110) and (111) facets. As the islands approach 1μm in lateral extent, they extend in the [0-11] direction to form an elongated diamond footprint, develop rough, stepped surfaces, and whole blocks of material within each island tilt locally. The six directed growth pattern is repeated from island to island. These six orientations are retained in the film as the islands coalesce and as the film thickens. Parallel work has shown that the tilt is circumvented by forcing island coalesce to occur before reaching ~1μm in lateral extent. In the case of growth on features that control the reaction kinetics or physical control of the arrangement of islands thought mask patterning, window widths of < 1μm cause copious nucleation at the mask-edges and force coalescence at small island size. BEKP demonstrates that these islands are aligned with one another indicating that substrate topography can be used to manipulate growth.

EE3.15 On the nucleation of GaP/GaAs and the effect of buried stress fields. Joao Guilherme Zelcovitz1, Jose Roberto Ribeiro Bortoloto1, Jefferson Bettini2 and Monica Alonso Cotta1; 1DFA, UNICAMP, Campinas, SP, Brazil; 2LME, LNLS, Campinas, SP, Brazil.

In this work we study the growth of GaP/GaAs by chemical beam epitaxy (CBE) and the role of a buried InP doped layer on GaP film growth in order to obtain the desired planar interfacial structure. In this case the GaP samples were grown by CBE with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED). GaP films 4 to 10 monolayers (ML)-thick were deposited. The growth temperatures were 540°C ± 5°C. The topography of the samples was examined in-situ with in-Atomic Force Microscopy (AFM). The characteristics of GaP films grown on unstressed GaAs were evaluated by means of surface roughness and size distribution for GaP nucleation islands, as well as from the RHEED patterns formed during deposition and cool down. Even though GaP/GaAs growth is assumed to occur in the Wolker-Weber mode, a two-dimensional (2D) RHEED pattern was observed for all samples grown. For the 4ML-thick samples, we noticed a dependence of the RHEED 2D transition on the As/P switch times. This is most likely due to As contamination of the first GaP MLs, thus increasing the critical thickness for 3D nucleation. The 4ML sample with larger As/P switch time shows a chevron-like RHEED pattern usually associated to dot formation but such dots cannot be observed in the AFM images. A large density of small dots (diameters ~ 22 nm and heights ~ 1-2 nm), however, is observed for the 6ML sample. On the other hand, for thicker GaP films there is a ten-fold increase in roughness and the formation of large depressions where growth seems to be inhibited. This morphology suggests that growth is taking place preferentially at the top of the 3D islands from this point on. This behavior may result from kinetically-driven material redistribution on the surface due to strain driven patterns in the film. The nucleation of GaP on stressed GaAs was accomplished by using buried arrays of InP dots grown on GaInP buffer layers with periodic compositional modulation. The GaP nucleation was studied with AFM and High Resolution Transmission Electron Microscopy (TEM). AFM images for these GaP samples show larger dots, with lateral size and spatial ordering compatible with the buried InP array. For GaP films deposited on top of compositionally-modulated InGaP layers, however, GaP dots with a wider size distribution, and
lower spatial ordering on the surface, was observed. These results show that GaP nucleation is indeed affected by the stress field of the InP dots. zelcovit@illinois.edu

EES.16
Effects of Temperature and Strain on Dislocation Glide on (110) Plane in Zn-Blende Materials (In and InGaAs) Grown on a (001) Surface. Nate Quiteriano and Eugene A. Fitzgerald; MIT, Cambridge, Massachusetts.

Using passivated relaxed metamorphic buffer, InP devices could be grown on larger GaAs wafers and use the GaAs manufacturing infrastructure to reduce costs and open the use of InP devices to new, lower-cost applications. We have studied in detail a variety of materials systems in order to have high-quality InP/GaAs. As a result of our study, we can grade up to ~0.3% In$_{0.33}$Ga$_{0.67}$As retaining low threading dislocation densities of 1.5x105 cm$^{-2}$. However, as we approach ~0.3% In$_{0.33}$Ga$_{0.67}$As (InGaAs lattice matched to InP) composition modulation interfaces, threading dislocation density increases to over 1x106 cm$^{-2}$. To circumvent composition modulation, we attempted using partially-relaxed InP on In$_{0.34}$Ga$_{0.66}$As to achieve low threading dislocation density on GaAs. In the process we have discovered that a significant amount of relaxation at the InP/In$_{0.34}$Ga$_{0.66}$As interface is relieved by the activation of an alternative slip system. The primary slip system in diamond-cubic and zinc-blend materials is a/2<110> [111]. (The notation indicates the burgers vector whose length and direction is a/2 <110> while gliding on a {111} plane). Compressively strained InP deposited on In$_{0.35}$Ga$_{0.65}$P [misfit of 0.16% compositionally graded from 001 GaAs] relaxes via this slip system with <110> type line directions. We have found, however, that InP (or In$_{0.35}$Ga$_{0.65}$As) on relaxed In$_{0.34}$Ga$_{0.66}$As activates a secondary slip system, a/2<110> [110], with <100> line directions. There is a misfit of 1.6% between InP (or In$_{0.35}$Ga$_{0.65}$As) and In$_{0.34}$Ga$_{0.66}$As. Interestingly, the amount of relaxation allowed by the secondary slip system is a function of temperature where lower temperatures favor the secondary, a/2<110> [110], slip system. At all temperatures in all samples, however, cross slip between the primary and secondary systems is prominent which indicates that the <110> burgers vectors are not dissociated into partial dislocations which is common in lower mismatched systems. Other authors have reported the existence of this slip system on the (001) interface in the InGaAs [1], SiGe[2], In$_{0.48}$Ga$_{0.52}$As [3] systems. However, primary relaxation via this slip system using MOCVD has not been reported and no systematic study on strain or temperature has been done. We report the effect of temperature and strain on the relaxation via the a/2<110> [110] slip system and the effect on threading dislocation density when using this system to relax lattice mismatched materials.

EES.17

We have bonded two low temperature (LT) grown single crystal GaAs and explored GaAs precipitation and its role in bridging two crystals during direct wafer bonding. In our work, a 500 Å LT GaAs layer was deposited at 200 °C on the 150 mm LT GaAs buffer grown at normal growth temperature. Transmission electron micrographs show no discernable differences between LT GaAs layer and the underlying GaAs buffer. Arsenic precipitates about 20 Å in size are clearly visible after that LT GaAs has been annealed at 600 °C for 10 minutes in vacuum with As pressure. The uniformly distributed precipitates extend 1000 Å beyond the LT GaAs layer into the buffer. The results of precipitation and its distribution are consistent with those reported in the literature. Direct wafer bonding of the LT GaAs is performed at 400 °C for one hour under force. TEM shows an uneven bonding layer exists between the bonding wafers. The bonding layer varies in thickness from 10 Å to 40 Å, and is amorphous possibly consisting of GaO$_x$ or other oxide. Symmetrically next to the amorphous bonding layer are two distinctive 500 Å layers each densely packed with tiny As precipitates. Apparently the As precipitation is confined within the original LT GaAs layer which annealed at 400 °C. The bonded LT GaAs samples can be annealed at 600 °C for 10 minutes without any applied mechanical stress. As precipitates again migrate into the GaAs buffer as those in annealed but unbounded wafers. However, the distribution of As precipitates is no longer uniform but exhibits a U-shape distribution, i.e. As precipitates are denser and larger near the surface and toward the substrate. In addition to the segregation of As precipitates, segregation of the bonding layer also takes place. This study of As precipitation in the bonding of LT GaAs provides an excellent means to understanding the point defect diffusion and its underlying correlation to the As precipitation as well as wafer bonding mechanism.

EES.20
Cathodoluminescence study of orientation patterned GaAs films for non-linear optics. Manuel Avella, Ivan Jimenez, David Bliss, C. Lynch, and W. Weyburne; 1 Fisica Materia Condensada, Universidad de Valladolid, Valladolid, Spain; 2 Air Force Research
Laboratory, Hanscom AFB, Hanscom, Massachusetts.

Zincblende semiconductor materials, particularly GaAs and ZnSe, are very promising for optical frequency conversion by quasi-phase-matching techniques. GaAs has a large second-order non-linear optical coefficient, high transparency in the 2-12 micron range, a high damage threshold, and it offers the advantage of integration with semiconductor lasers. Templates for antiphase domain gratings on GaAs substrates were produced by photolithography and growth of GaAs/Ge/GaAs by molecular beam epitaxy (MBE). Subsequently, thin layers of orientation-patterned GaAs (OP-GaAs) were grown by low-pressure hydride vapor phase epitaxy (LP-HYPE). HVPE allows thick growth (up to 1 mm) of GaAs antiphase domain arrays. The challenge is to achieve regular vertical domains with well-defined sidewalls. Both the antiphase defect and pattern defects must be controlled in order to optimize the OP-GaAs for use in non-linear optical devices. We present a complete cathodoluminescence (CL) analysis of the OP-GaAs grown by LP-HYPE. The structure of the antiphase domain gratings is revealed by panchromatic CL images of cleaved surfaces. The main crystal defects as well as their origins are revealed. A spectral analysis revealed strain fields around the domain walls. We also describe the main features of dislocations formed during the layer growth.

EE2.21

Cathodoluminescence of Boron-rich Crystals from High Temperature Copper Solutions. Christopher Maier1 and Linda Jones3; 1 School of Engineering, Alfred University, Alfred, New York; 3 Picker Engineering Program, Smith College, Northampton, Massachusetts.

Boron-rich solids form a unique class of materials that are essentially comprised of rigidly bound three-dimensional networks of icosahedral (B12) clusters. The ability of these networks to accommodate additional atoms in the form of 2-3 atom inter-icosahedral linear segments, other icosahedral fragments, and substituted species within B12 icosahedra, as well as interstitially dissolved solute atoms manifests itself in the stabilization of a variety of ordered structures. The electronic properties of these materials vary from conducting semi-solids to wide band gap insulators. As the copper-copper binary system is of the simple eutectic type, substantial amounts of boron are soluble in liquid copper at high temperature, and no intermediate boric phases exist, the use of copper as a high temperature phase growth for boron-rich crystals is particularly advantageous for the growth of boron-rich single crystals. The results of a crystal growth study are presented wherein rhombohedral boron-rich crystals are prepared from high temperature copper solutions saturated with boron and carbon. The presence of carbon results in the simultaneous precipitation of both the boron carbide (B4C) and carbon-saturated β-boron (CuB2) phases. The composition, structure, and morphologies of the resultant crystals are analyzed as a function of the B:C ratio in solution. Conditions for crystal growth and approximate solubility limits as a function of the B:C ratio in solution will also be discussed.

EE2.22

Optoelectronic properties of RF sputtered CuCl thin films. Gomathi Natarajan, Anirban Mitra, Lisa O’Reilly, Stephen Daniels, David Cameron, Patrick McNally, Olabanji Lucas and Louise Bradley; Electronic Engineering, Dublin City University, Dublin, Ireland.

Copper (I) chloride is a potential candidate for UV optoelectronics due to the fact that it is closely lattice matched to Si which makes it readily integrable with silicon device technology. The structural and optoelectronic properties of CuCl thin films deposited on glass and Si by RF magnetron sputtering are investigated in detail. The crystallinity is studied using X-ray diffraction which confirms the growth of CuCl thin films with cubic zinc blende structure predominantly oriented in the (111) direction. Triangular crystallites are observed in the surface topograph of the samples with Atomic Force Microscopy. Optical properties of the films were thoroughly investigated using optical absorbance, cathodoluminescence (CL) and photo luminescence (PL) spectroscopy. Room temperature absorption spectroscopy confirms the existence of two excitation peaks namely Z12 and Z3 at 372 and 380 nm respectively. UV emission is observed at room temperature in CL and PL spectra by the decay of Z3 exciton around 383 nm. The broadening of the Z3 exciton and temperature dependence of the excitonic band gap are investigated with PL spectroscopy at temperatures ranging from 10 K to 300K.

EE2.23

Fabrication of Nitrided Mask on GaAs Surface and Its Machinability for STM Lithography. Yo Yamamoto1; Toshiyuki Kondo1, Sota Shimada2, Takahiro Moraga3, and Shigeo Narita4,1; 1 21st Century COE Program "NANOFACTORY" Meijo Univ., Nagoya, Japan; 2 Materials Science, Meijo Univ., Nagoya, Japan.

STM lithography is one of the attractive ways to fabricate nano structures for optical and electronic devices. To take advantage of STM lithography, it is important to develop the application with high thermal stability and good machinability. We studied the formation of GaN thin layer on GaAs (001) substrates by RF-MBE, and previously presented controllability of the flatness with process factors, such as substrate temperature [1]. In this study, we focus on machinability in STM lithography of the nitrided mask by controlling crystallinity with effective process factors, such as substrate temperature. After chemical etching with a solution of NH4OH:H2O2:H2O = 4:1:20, GaAs (001) substrate with a layer up to 580°C was nitrided to the native oxide layer. GaAs epitaxial buffer layer was deposited before nitridation in order to form a flat surface. To prevent the supply of the As flux was supplied at 1×1021 to 5×1021 Pa until nitridation. Then, the GaAs layer on nitrided samples was etched using RF nitrogen source changing substrate temperature between 300 and 320°C. Comparison of RHEED patterns indicated that the surface nitrided at 300°C had lower crystallinity, since the pattern was scattered, while the surface nitrided at higher temperature, i.e. at 320°C, showed higher crystallinity since its pattern had a facet structure. It was also found that the nitridation at lower temperature caused weak Ga-N bond from the result of XPS profiles. By STM lithography the sample nitrided at 300°C was cut in 20μm at the bias voltage of 80V, while the sample nitrided at 320°C was cut at higher voltage of 150V. So, it is concluded that the surface nitrided at lower temperature gives better machinability for STM lithography. Ref [1] Y. Yamamoto, Mat. Res. Symp. Proc. 843 (2005), T5.5

EE2.24

Annealing Time Dependence on 1.5μm Photoluminescence of Laser-Ablated -FeSi2, Kunotoshi Aoki, Mohammad Zakir Hossain, Shin-ichi Uekusa, Tomohiro Fukuda and Noboru Miura; School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa-kun, Japan.

Semiconducting β-FeSi2 is composed with nontoxic elements, which exist in great abundance on earth, and has possibility of emission around 1.5 μm. Therefore, β-FeSi2 is expected in environmental friendly Light-Emitting-Diodes (LED) for optical fiber communications. In addition, β-FeSi2 thin-films can grow epitaxially on silicon substrate, because of its crystal lattice constant which is nearly equal that of silicon. However no photoluminescence from laser-ablated β-FeSi2 thin-films were obtained. So, we have studied the relation between crystal quality and optical property on laser-ablated β-FeSi2 thin-film crystal. We prepared β-FeSi2 thin-films on Floating-Zone (FZ) n-Si (111) substrate at 500°C of substrate temperature with ArF excimer-laser and FeSi2 (99.99%) sintered target. Long-time and high-temperature thermal annealing was performed after the deposition in order to improve the crystal quality. Samples were annealed with infrared lamp under nitrogen atmosphere. Annealing times are 5, 10, 20, and 40 hrs, and annealing temperatures are respectively 600, 700, 800 and 900°C. Crystallinity was evaluated by X-ray Diffraction (XRD) measurement. We have observed effective crystal quality of β-FeSi2 because the Full Width at Half Max (FWHM) is 0.27°. We have succeeded to observe photoluminescence around 1.5 μm corresponding to β-FeSi2 bands from the long-time and high-temperature annealed β-FeSi2 thin-films. We will report and discuss the relationship on photoluminescence spectra and crystal quality in systematically experiments.

EE2.25

Selenium gallium remains one of the promising crystals for near and mid IR range nonlinear optics. Recently it has also been noted that large high-quality GaSe crystals can be used for the creation of millimeter and submillimeter (THz) coherent radiation sources. High-quality crystals grown by the latest technology are characterized by very low values of optical loss. In the maximum range, 1.5-12 μm, the absorption coefficient values lie within 0.1-0.05 cm(-1). Such values are typical for the crystals grown at the Siberian Physico-Technical Institute. However, additional advances in the GaSe materials properties are needed before GaSe achieves its full potential technological impact. Specifically, it is desirable that a method be found for increasing the crystal’s hardness, thereby reducing the crystal’s tendency to microscrap. This would allow the crystals to be cut at angles more closely related to the mid-IR range, in order to achieve higher optical conversion efficiency. Thus, the study of modifying the crystal properties by various doping and post-growth treatments, is still an area of ongoing active research. In this work we study the influence of annealing in sulfur vapor on the properties of GaSe single crystals. The objective of this work was
The study of the possibility of intercalating GaSe with sulfur from the gas phase, and to compare the influence of doping with sulfur from the melt, was performed on the structure of GaSe crystals. Three series of annealing experiments have been conducted at temperatures 774, 923, 1073 K. The obtained samples have been studied by Hall effect, photoconductivity, optical absorption, microhardness measurements, and X-ray diffraction. A thermodynamic analysis of the interaction between GaSe crystals with sulfur vapor indicates a high probability of Ga2S3 and GaS compound formation. X-ray measurements show that the system has a very strong tendency to form Ga2S3 films. This was observed in almost all samples studied. However, X-ray measurements of vacuum annealed samples reveal an increase in peak intensities. Apparently, annealing GaSe crystals in vacuum promotes crystalline perfection. Electronic transport measurements, however, show behavior similar to that of those annealed in sulfur vapor. After annealing in sulfur vapor the carrier mobility decreases. The resistance of the samples annealed at temperatures 774 K decreases, but samples annealed at higher temperatures show an increase in microhardness. Sulfur doping caused a peak to appear in the photoconductivity spectra near the intrinsic band. Within the intrinsic band two peaks corresponding to the band gaps of GaSe and Ga2S3 have been revealed. We also present a hypothesis to explain the impact of diffusion doping and melt doping with sulfur on the crystal structure and physical properties of GaSe crystals.

EE3.26 Analysis of the Temperature Distribution Intensity in High Power InGaAs/GaAs Lasers. Tomasz J. Ochalski, Dorota Wawer, Kamil Piotrowski, Marcin Sochoś, Michał Szymanski and Maciej Bugajski; Institute of Electron Technology, Warsaw, Poland.

In this work we present the analysis of thermal properties of high power InGaAs/GaAs lasers. The temperature profiles within the laser is studied both experimentally and theoretically. The spatially resolved thermoreflectance technique is used to obtain a detailed temperature distribution maps of the working devices. Such a method gives temperature maps with a spatial resolution better than 1 μm. The absolute temperature of different parts of the laser is determined with accuracy of 1 °C. The mapped area is the laser facet; i.e. the active region of the device and the substrate. We have examined series of lasers with different contact width and otherwise the same construction and the same cavity length. Major point of this work is comparison of the temperature distribution within devices with different contact width; starting with the narrow stripe and ending with broad area lasers. We compare thermal properties and specifically temperature diffusion lengths in the lasers with stripe width of 5, 10, 20, 40 and 80 μm. Numerical calculations of temperature distributions in the devices studied are performed by finite element method (FEM) method. The paper addresses an important subject of device design optimization. Up to now there are only few theoretical papers on temperature diffusion length in semiconductor lasers. As far as experimental determination of the temperature distribution in the lasers is concerned, there is no other method than thermoreflectance, which can give comparable accuracy and spatial resolution. The method developed in our laboratory proved to be a perfect tool to determine real temperature distribution within working laser diode.

EE3.27 Evaluation on Defects of Er Implanted Al0.7Ga0.3As by Using Positron Annihilation Spectroscopy. Tomoyuki Araki1, Shin-ichiro Uekusa2 and Akira Uedono2; 1Dept. of Electrical and Electronic Engineering, Meiji Univ., Kawasaki, Kanagawa, Japan; 2Institute of Applied Physics, Tsukuba Univ., Tsukuba, Ibaraki, Japan.

Erbium (Er)-doped semiconductors are of much interest as an application of optical emitting device at 1.54 μm, which coincides with the wavelength of minimum loss in silica-based optical fiber. It is important for the Er-doped semiconductor to improve problems such as poor luminescence efficiency and high thermal sensitivity, which is the main property of the Er-related emission of energy transition from the host semiconductor to intra-4f-shell of Er ions. So far, Er ions were implanted into InGaAs, InGaAsP, GaAs. We have studied on the optical properties of Er intra-4f-shell luminescence. These substrates were grown un-doped Al0.7Ga0.3As layer on GaAs (100) by Metal Organic Chemical Vapor Deposition (MOCVD). In this work, we studied the optical sensitization and the defects of Er implanted Al0.7Ga0.3As substrates. Er implantation was carried out at 1 MeV with doses of 1 × 1017 cm−2 at RT. After implanting the ions, these samples were thermal annealed at temperature of 800 °C for 10 min by the face down-facet up configuration in hydrostatic condition. The intrinsic defects of Er implanted Al0.7Ga0.3As were studied, using standard Positron Annihilation Spectroscopy (PAS) and Photoluminescence (PL) technique. The incident energy of mono-energetic positrons was implanted from 30 to 130 keV. The characterization of chlorine-doped Al0.7Ga0.3As:Er annealed at 800 °C were successfully studied by using PAS technique. Into the incident energy around 8 keV, Shape parameter of Al0.7Ga0.3As:Er annealed at 800 °C was nearly equal to un-doped Al0.7Ga0.3As. We report systematically the experimental results of PAS as being related to PL.

Diluted magnetic semiconductors (DMS) such as GaAs: Mn have a crucial structure based on the band-doping concept and exhibit magnetic and electrical properties that render them promising for a number of applications such as spintronic devices. There are two principle challenges that arise during the synthesis of new DMS, which have so far prevented these materials realizing their potential in microtechnology. The first difficulty is the incorporation of a sizable amount of magnetic ion into the structure. The other issue is that the Curie Temperature, Tc, should be near or above room temperature in order for the material to have practical device applications. In an attempt to address these obstacles, we have chosen to focus our work on more complicated ternary systems that are based on the structure of cubic diamond. Theoretical work has suggested that p-type I-III-V1 systems should exhibit ferromagnetism at practical temperatures when doped with Mn. Preparation and characterization of these materials is a difficult task. Traditional high-temperature, solid-state synthetic methods can easily lead to phase separation or the formation of Mn-free thermodynamic sinks. Certain soft techniques, which proceed far from thermal equilibrium, often yield non-homogenous materials in which it is difficult to observe the observed magnetic behavior to a specific composition. Therefore, it is important to characterize the distribution to pursue the ultimate solid-state microwave synthetic method. This method has been used to successfully prepare a variety of materials. Specifically, we focus on the microwave preparation of AgIn2Se2, Ag2In2Se3:Mn, CuIn2Se3 and Cu2InSe3. These materials have been prepared by the microwave irradiation of the elemental starting materials in fused-silica vessels that were sealed under vacuum. The resulting materials have been structurally and physiochemically characterized. In particular, magnetic susceptibility data will be discussed.

EE3.29 InAs/In0.53Ga0.47As quantum dots for 1.5 μm laser applications. Mirja Richter1,2, Benjamin Damilano1, Andreas D. Wieck1,3, Jean-Yves Duboz1 and Jean Massies1; 1Centre de Recherche sur l’Hetero-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, Sophia-Antipolis, France; 2Lehrstuhl fuer Angewandte Festkoerperforschung, Ruhr-Universitaet Bochum, Bochum, Germany.

It was recently demonstrated that using InAs/In0.53Ga0.47As quantum dots (QDs) is an efficient way to achieve high performance lasers at 1.5 μm on GaAs substrates, due to some specific characteristics of such QDs: i) a low size dispersion (leading to a narrow photoluminescence emission); ii) a high density; iii) a coherent strained state (i.e. without dislocations). All these conditions have to be fulfilled to realise performance QD lasers. In an attempt to extend the wavelength emission in the 1.5μm range, several approaches have been proposed. In particular, embedding the InAs QDs in an InGaAsN/GaAsN matrix allows to achieve 1.5μm emission[1], but in this case, the PL full width at half maximum (FWHM) is considerably broadened compared to InAs/InGaAs QDs. The main objective of this work is to obtain QDs emitting in the 1.5μm range with a PL linewidth and intensity comparable to those achieved with InAs/In0.53Ga0.47As QDs emitting at 1.3μm. We studied InAs QDs overgrown by In0.53Ga0.47As1−xN x. The primary interest of this approach is that it allows us to grow InAs QDs on GaAs surface with a high density and a narrow size dispersion (completely the same as for InAs QDs embedded in GaAs). Also, the In0.53Ga0.47As1−xN x alloy has a lower bandgap energy than In0.53Ga0.47As and is better lattice matched with GaAs, both elements being of key importance to get longer wavelength emission while avoiding dislocation formation. Nevertheless, the material quality of InGaAsN remains problematic as it is affected by a lot of point defects due to low growth temperatures and it needs annealing to reach optimum PL efficiency. We report on results obtained by growing self-assembled InAs QDs overgrowth on In0.53Ga0.47As1−xN x by solid source molecular beam epitaxy. The growth temperature and rate were optimized separately for each of the layers, and the growth was interrupted after the QD growth in order to anneal the sample and stabilize the temperature. The samples were set at 520°C for InAs QDs, whereas it was varied from 420 to 480°C for InGaAsN layer. High QD densities of about 4 × 1010 cm−2 are obtained for all samples. The PL wavelength red-shifts from 1.32 to 1.62μm when the N composition increases from 0 to 0.17. However,
this shift is correlated to a decrease in PL intensity. Rapid thermal annealing realized at different temperatures partially compensates this reduction. For structures with 1.25 ± 0.5 at.% In content, the PL intensity indicates that only a factor 3.0 is lost compared to an GaAs/InGaAs QD reference and the PL FWHM is 38.9 meV. These results constitute a step towards the achievement of QD lasers on GaAs leading to 1.35 μm devices. Furthermore, there was an increase in the external quantum efficiency associated to the presence of substantial carbon CAs. This was attributed to the outdiffusion of arsenic from the sample surface (in uncapped samples) to promote the carbon atoms to sit in the As vacancy sites and hence become activated. In the present study, we investigate the activation of carbon dopant in the GaAs and Al0.60 Ga0.40 As samples annealed under different dielectric cap layers (SiO2, SiN and TiO2). We will discuss some conclusions, a reduction in the carrier concentration was obtained with Al0.60 Ga0.40 As and an increase in the carrier concentration was obtained with SiO2 and SiN cap layers. Induced interfacial interactions were observed in those systems to enhance the optical properties of AlGaaS/InGaAs quantum cascade lasers. The effect on the performance of these devices will be discussed.

SESSION EE4: Terahertz Materials and Devices
Chair: Linda Olsafen and Michael Waneke
Tuesday, November 29, 2005
Constitution B (Sheraton)

8:00 AM EE4.1
MOVPE grown QCLs emitting at 7.6μm and 10.3μm.
Andrey Krysa1, J. S. Roberts2, C. M. Teay3, R. P. Green4, L. R. Wilson5, E. A. Zibik6, D. G. Revin7, J. W. Cockburn8, C. Pfuegel9, P. Schlom10, and U. Strasser11. 1Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota; 2Department of Chemistry, Imperial College, London, United Kingdom; 3Nanophotonics Centre for III-V Technologies, Dept. of Electronic and Electrical Eng., University of Sheffield, Sheffield, United Kingdom; 4Dept. of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; 5Zentrum fuer Mikro- und Nanostrukturen, Technische Universität Wien, Vienna, Austria.

AlInAs/InGaAs/InP quantum cascade lasers (QCLs) are compact semiconductor light sources for the mid-infrared spectral region. The established technology of MOVPE is generally used to fabricate the many hundreds of very thin layers, which comprise the gain region in such devices. However, recently, we reported the MOVPE growth of AlInAs/InGaAs/InP QCLs emitting at 9.6μm [1, 2]. MOVPE is more suited to epitaxy requiring InP substrates, as well as having higher growth rates and the scaling to multi-wafer deposition. Furthermore, these MOVPE grown QCLs are analogous to InP based telecommunication wavelength lasers, which are manufactured predominantly by MOVPE. The presentation will report the growth and performance of Fabry-Perot (F-P) and distributed feedback (DFB) QCLs emitting at 7.6μm and 10.3μm. These wavelengths are of particular interest to optical sensing of methane and ethane, respectively. The QCL design utilizes a four-well active region or double-photon resonance design [3] to optimize the depopulation of the lowest energy level in each of the 35 cascaded gain sections. (004) X-Ray diffraction was used to determine the thickness of the gain sections. The measured values were within 1% of the intended thickness showing a high degree of thickness control, which is required for reproducible laser wavelengths. In addition, TEM indicated resolved AlInAs/InGaAs layers, including the very thin (nominal thickness of 8Å) barriers of the 7.6μm and 10.3μm F-P wave-guide lasers with 1.3m long cavities were operated in pulse mode with respective RT threshold currents of 1.2 ± 0.2 kA cm$^{-2}$ and 3.3 kA cm$^{-2}$. All samples lased above RT and as high as 320K, only limited by the cryostat temperature range. QCLs operating with a single longitudinal mode are required for spectroscopic applications and have therefore been patterned with 3/2 μm DBR gratings. A close alignment of the peak in the gain spectrum with the DBR grating has resulted in reduced threshold currents of 2.4 kA cm$^{-2}$ and 3 kA cm$^{-2}$ for the 7.6 and 10.3 micron devices respectively. The peak power output of the DFB devices was 0.4W at RT. 1. R.P. Green et al, Appl. Phys. Lett. 83 (2003) 1921 2. A.B.Krysa et al. J. Cryst. Growth 272 (2004) 832 3. M.Beck et al, Science 295 (2002) 301

8:15 AM EE4.2
New approaches for short wavelengths quantum cascade lasers.
Luke Wilson1, Dmitry Revin2, Matthew Steer3, Evgeny Zibik4, John Cockburn4, Robert Airey5 and Mark Hopkinson1, 1Physics and Astronomy, University of Sheffield, UK, Sheffield, United Kingdom; 2National Centre for III-V Technologies, University of Sheffield, Sheffield, United Kingdom.

High performance, mid-infrared quantum cascade lasers (QCLs) emitting at wavelengths beyond 5μm have reached a high level of technological maturity over recent years. Attention is now turning to producing QCLs with similar levels of performance operating in the technologically important λ~3–5μm atmospheric window. In order to
push QCL emission down to 3μm and beyond it is highly desirable to use heterostructure materials with the largest possible conduction band offset to (i) enhance the field effect and (ii) prevent strain compensation.

Bloom oscillation in electrically biased semiconductor superlattices offers potential broadband terahertz gain from DC up to the Bloch frequency or Stark splitting. Useful gain up to 2-3 terahertz can be the basis for fundamental solid-state electronic oscillators operating at 10 times the frequency of existing devices. Here we describe recent experiments that directly measure terahertz “loss and gain” in electrically biased superlattices and project its use in terahertz oscillators. The earliest theoretical models of electrically biased superlattices predicted an unusual dynamical conductivity; the absorptive part was predicted to be negative, exhibiting gain, at frequencies up to the Bloch frequency at which point it is expected to cross over and exhibit loss. A device based on this phenomenon may be described as a terahertz laser with out inversion. Various experiments have demonstrated Bloch oscillation in semiconductor superlattices. Only recently have measurements been carried out that directly measure the dynamical terahertz conductivity under electric bias. A major stumbling block is the thermal instability of the electrically biased doped superlattice to the formation of electric field domains. To circumvent this, we have fabricated superlattices. We anticipate that electrically biased superlattices of InGaAs/InAlAs superlattices allows us to determine the Stark ladder splitting and confirms the absence of electric field domains in short structures. The absorption of radiation from 1.5 to 2.5 THz is measured in 10 micron high InAs/AlSb superlattices, punctuated with heavily doped regions. Under electrical bias the superlattices exhibit a crossover from loss to gain as the Stark ladder is opened and the spacing of the runs exceeds the mean absorption frequency. These room temperature measurements are carried out in a novel planar terahertz waveguide defined by photonic band gap semiconductor metal. The superlattice is placed within the electric field of the superlattices. The terahertz frequency dependent crossover voltage indicates ~ 80% participation by the superlattices. We conclude by proposing Bloch oscillator terahertz waveguide structures that can use the electric field to make an electronic solid-state fundamental terahertz oscillator. UCSC work has been supported by ARO, DARPA/ONR and CNID.

We report on the resonant detection of terahertz radiation by nanometer High Electron Mobility Transistors (HEMTs) at room temperature. Our results show that field effect terahertz wavelength QCL operation. I will begin by comparing recent results and predicted performance levels for the most promising high ΔEg materials, namely (i) strained compensated GaAs/AlAs superlattices on InP and (ii) InAs/AlSb on either InAs or GaSb. I will then discuss in detail our recent work, in which we have extended the QCL concept to the In0.53Ga0.47As/InAlAs materials system which combines a very large ΔEg (~1.6eV) with strong radiative recombination into existing, well-established InP-based waveguide and fabrication technology. Due to the high complexity of QCL design and the stringent requirements on layer composition and monolayer uniformity, extension to this materials system presents a considerable challenge. However, our QCL performance levels as well as optical and structural characterisation indicate high quality epitaxial growth with minimal substrate segregation and very strong coupling. For high performance QCLs operating in the 3-5μm region, [1] D.G. Revi, L.R. Wilson, E.A. Zibik, R.P. Green, J.W. Cockburn, M.J. Steer, R.J. Airey and M. Hopkins, Appl. Phys. Lett. 84, 1447 (2004). [2] D.G. Revi, L.R. Wilson, E.A. Zibik, R.P. Green, J.W. Cockburn, M.J. Steer, R.J. Airey, and M. Hopkins, Appl. Phys. Lett. 85, 3992 (2004). [3] D.G. Revi, M.J. Steer, L.R. Wilson, J.R. Airey, J.W. Cockburn, E.A. Zibik, R.P. Green, Electron. Lett. 40, 874 (2004).

9:30 AM EE4.5 Plasmon Based Split-Grating-Gate Terahertz Detector. Eric A. Shanes1, Mike C. Wanke2, John L. Reno2, Mark Lee3, Albert D. Greene1 and S. James Allen2.

Plasmon evanescent operation of femtosecond terahertz pulses can be improved by optical rectification in a zinc te crystal (one of most important sources in modern terahertz spectroscopy) was also demonstrated using the same 250 nm gate length GaAs/AlAs HEMT. The results show that plasma wave nanometer transistors can be efficient and fast detectors for terahertz spectroscopic application.

9:45 AM EE4.6 Spectral and Temporal Resolution of THz Detectors Based on Quantum Hall Devices with Various Geometries. Huan-Ming D. Setlatter1, Alexei Tersigni2, Yuri Veselov3, and Mark C. Itoh4.

Measurements of the THz photocoactivity at quantum Hall systems (QHS) are interesting with respect to the application of QHS as sensitive and tunable THz detectors for wavelengths around 100 micrometers. In this study, we present measurements of the photocoactivity at QHS using pulses of THz p-Ge laser radiation in the region of 1.7 to 2.2 THz. Typical QH samples used in this study were a meander sample, and a circular Corbino device, patterned photolithographically from GaAs/AlGaAs-heterostructures with a two-dimensional electron system. The wafer from which the meander and Corbino samples are cut from has an electron density of...
Quantum cascade lasers (QCLs) operating in the mid-infrared spectral range have proven their usefulness as a compact, powerful source of coherent radiation. Recently, the QCL concept was successfully extended to the terahertz range, thanks to the implementation of a waveguide concept based on surface plasma propagation. The performances of these devices are rapidly improving, with pulsed operation reaching about 140 K. Their implementation in many applications requires technological solution, and remote sensing now requires the realization of lasers for specific emission frequencies and the possibility of having stable, reliable, single-mode output, preferably with a broad tuning range. We have realized superluminescent-based lasers for specific sensing applications, emitting at frequencies from 4.8 THz down to 2.3 THz. 2.5 THz is a frequency of particular interest, with potential applications in OH monitoring.

Lasers emitting at this wavelength have shown low threshold current densities of 75 A cm$^{-2}$ and high continuous wave (cw) output powers. These performance have been achieved by using the surface plasma waveguide concept with two buried highly doped semiconductor layers. This allows the possibility of controlling separately the boundary condition on the two sides, thereby in a better compromise between optical losses and confinement factor. We have also developed distributed feedback (DFB) lasers operating at 2.5 THz. These are realised by opening a periodical array in the C$_{60}$/Au metallisation on the top of the ridge. Since the optical mode does not exist where the metal layer is absent, each slit acts as a potential barrier for light propagation. If the slit width is sufficiently small, minimal scattering out of the waveguide is obtained, and distributed feedback laser action can be established. Single mode emission has been demonstrated over the full range of investigated temperature and injection currents. The same technique can be implemented in Fabry-Perot devices to realize high-reflection distributed mirrors. We have fabricated distributed Bragg mirrors by lithographically defining slits with a $\lambda/2$ period at one end of 2.5 THz laser ridges. An improvement in threshold current of about 15% is observed and high peak powers of more than 15 mW can be recorded. We are now working on the demonstration of stable, single-mode emission, which should further accelerate the implementation of THz QC lasers in many spectroscopic applications (with particular relevance to astronomical and atmospheric sensing), as well as exploring the potential in the experimental control of the laser cavity resonance. Both are challenging propositions, but preliminary encouraging results show that indeed such schemes can be used to affect laser operation and that tunable THz QC lasers are a future possibility.

11:00 AM *E44.8 Terahertz Generation by Photoionizing in Semiconductor/Metal Composite Materials. Arthur Gossard2 and Elliott R. Brown1; 1ECE Department, UCSC, Santa Barbara, California; 2Materials Dept., UCSC, Santa Barbara, California.

We describe recent advances in the performance of tunable coherent Terahertz sources based on photoionizing in semiconductor/metal composite materials. While the earliest photoconductive mixers for Terahertz generation were based on low-temperature-grown GaAs, improved performance is achieved with composite materials incorporating epitaxial semi-metallic ErAs nanoparticles. The nanoparticles have been incorporated in both GaAs2 and InGaAs1 for tunable, coherent generation at 0.9 and 1.5 micrometer photoexcitation wavelengths. We have produced both photoconductive and photovoltaic mixers. Dense arrays of nanoscale islands produce the rapid photocarrier recombination needed for efficient photoconductive mixing. Single layers of the nanosilands provide the enhanced tunneling needed to cascade high-speed photoelectric gainers in a recently demonstrated alternate route to Terahertz generation$^{[3]}$. 1. Bjorneboe JE, Chun TLD, Lee AWY, Brown ER, Driscoll DC, M Good AC, Materials and Methods. Appl. Phys. Letters 85, 3983 (2004) 2. Driscoll DC, Hansson MP, Gossard AC, Brown ER, Appl. Phys. Letters 85, 7199 (2005) 3. G H Dohler, F Renner, O Klar, M Eckardt, A Schwanhauser, S Malzer, D Driscoll, M Hanson, A C Gossard, G Loafo, T Loffler and H Roskos. Semicon. Sci. Technol. 20, S178 (2005).

The single crystal growth of large semi-insulating GaSe by vertical Bridgman technique using in-house processed zone refined selenium (Se) and high purity gallium (Ga) has been described. The grown crystals are highly efficient for broadband and tunable THz sources (10-40 THz) and sensors (100 GHz-30 THz), biomedical diagnostics, biochemical and trace explosive vapor identification. The grown crystals (2.5 cm diameter and ~10 cm long) have demonstrated extremely promising characteristics with good optical quality (absorption coefficient ~0.1 cm$^{-1}$ in the spectral range of 0.02-18 μm), high dark resistivity (~108 Ω cm), wide band gap (2.01 eV at 300K), good anisotropic (\parallel and \perp) electrical transport properties (μ_{\parallel}/μ_{\perp}, τ_{\parallel}/τ_{\perp}, and μ_{\parallel}/μ_{\perp}) and long term stability. The crystals have been characterized by x-ray diffraction (XRD), energy dispersive analysis by x-rays (EDAX), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and low temperature photoluminescence (PL) measurements. Various chemo-mechanical etching and different steps involved in fabricating GaSe crystals for THz sources and sensors will also be presented.

SESSION E55/FF7: Joint Session: Nitride Materials for Devices
Chair: Christian Wetzel
Tuesday Afternoon, November 29, 2005
Grand Ballroom (Sheraton)

1:30 PM *E55.1/FF7.1 III-N Epitaxial Growth for Nitride Devices. Russell Dupuis, Theodore Chung, Wonseok Lee, Peng Li, Jae Lim, Jae-Hyun Ryu and Dong-Won You; Center for Compound Semiconductors, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Various GaN-based device structures were grown on (0001) sapphire, 6H-SIC, and “bulk” GaN substrates by metalorganic chemical vapor deposition. The device structures of this talk consist of both majority and minority carrier devices, namely, InGaN green-emitting LEDs, p - n - n rectifiers, AlGaN/GaN heterojunction field-effect transistors, and heterojunction bipolar transistors. These structures are grown by MOCVD using TMGAs, TEGAs, TMAI, TMIn and NH$_3$ precursors. This talk will compare the performance of these various device structures on the three different substrates. The material properties of the structures were characterized by photoluminescence (PL), optical transmittance, X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), sheet resistance mapping, and triple-axis x-29 scans by XRD on an (002) and (102) reflection planes. AFM measurements on the surfaces of these devices typically show atomic steps and localized defects due to dislocations with the RMS roughness values for the three substrates varying: GaN > SIC > GaN. The green LEDs showed relatively narrow PL emission at wavelengths ~540 nm. Major performance characteristics of the rectifier, such as the on-state resistance, breakdown voltage, and reverse bias leakage current, are compared depending on the substrate and the passivation scheme employed. Under optimized conditions, p - i - n diodes with >5000 V reverse bias breakdown and an on-resistance less than 3 mΩ cm$^{-2}$ were achieved. HFETs grown on SiC show high mobilities and sheet charge with μ_{\parallel}15000 cm2/V s and n=1x1015 cm$^{-2}$ with a sheet resistance ~240 Ω/square. Nitride μ-HBTs have been grown with graded InGaN emitter and base layers. Base contact resistance and base access etching still need to be developed. Our best InGaN HBTs to date
3:30 PM EES.4/FFT.4
Structural, Optical, and Magnetic Behavior of In-situ Doped, MOCVD-Grown Ga\textsubscript{1-x}Mn\textsubscript{x}N Thin Films and Heterostructures. Martin Strassburg1,2, William E. Fenwick1, Matthew Kane1,3, Ali Asghar1, Shalini Gupta1, Hun Kang1, Christopher Summers2, Nikolaus Dietz2, Axel Hoffmann4 and Ian T. Mortimer5.

Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia; 2Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia; 3School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia; 4Microelectronics Institute, Solid State Physics, Technical University of Berlin, Berlin, Germany.

Dilute magnetic semiconductors (DMS) show promise as materials that can exhibit ferromagnetism at room temperature (RT). However, the nature of ferromagnetism in this material system must be well understood in order to allow intelligent design of RT spintronic devices. This work investigates the magnetic properties of the as-grown films and the effect of Mn incorporation on crystal integrity and device performance. Ga\textsubscript{1-x}Mn\textsubscript{x}N films were grown by MOCVD on c-plane sapphire substrates with varying thickness and Mn concentration. Homogeneous Mn incorporation throughout the films was verified with Secondary Ion Mass Spectroscopy (SIMS), and no macroscopic second phases (MnxNy) were detected using X-ray diffraction (XRD). Superior crystalline quality in the MOCVD-grown films relative to Mn-implanted GaN epilayers was confirmed via Raman spectroscopy. The film's magnetic properties were studied using various magnetization techniques.

3:45 PM EES.5/FFT.5
Fe-Centers in GaN as Candidates for SpINTRONIC Applications. Emo Malguth1, Axel Hoffmann2, Matthew Phillips1 and Wolfgang Gehlho1.

1Microstructural Analysis Unit, University of Technology, Sydney, New South Wales, Australia; 2Institute of Solid-State Physics, University of Technology, Berlin, Germany.

For the potential use of iron doped GaN as a material for spintronic applications, it is of great importance to know the exact energetic positions of the electronic states of the Fe ions in the bandgap.

Another crucial issue is the charge state in which the iron is present. In order to investigate these issues a set of approximately 400\textmu m thick, freestanding HVPE grown GaN:Fe crystals with different Fe-concentration levels ranging from 2.1015 cm-3 to 2.1017 cm-3 was studied. The methods used for investigation were: photoluminescence (PL), transmission, photoluminescence excitation (PLE) and electron paramagnetic resonance (EPR). The fact that the samples are freestanding enabled us to cut out the optical experiments with both parallel and perpendicular polarization, relative to the c-axis. We were able to establish a consistent picture of the different charge states present in the samples and their respective term schemes including fine structure. The presence of Fe3+ and Fe4+ related defect-complexes with dependance on the iron concentration was identified. The positions of the electronic states in the bandgap were determined not only for the 3+ but also for the 2+ charge state. The Fe2+ transition (E\textsubscript{g}\rightarrow E\textsubscript{g}'\textsubscript{T}) was observed here for the first time and the conduction band were previously believed to be degenerate. A multiple splitting of all of the Fe2+ and Fe3+ states was observed. The reason is the distortion of the trigonal crystal field around the Fe2+ cations resulting in c\textsubscript{2} symmetry. Particularly for the Eg\rightarrow Eg'\textsubscript{T} transitions of the Fe2+ could a complex absorption structure be resolved. From the lines' respective predominant polarization and temperature behavior, most of the observed lines could be assigned to E\textsubscript{g} and T\textsubscript{g} sublevels which are split in the trigonal crystal field.

749
4:00 PM EES5.6/FF7.6
Highly Insulating Non-polar a-GaN/AlGaN Films and Heterojunctions over r-Sapphire. Z. Chen, Jinwei X. Yang and M. Asif Khan. Electrical Engineering, University of South Carolina, Columbia, South Carolina.

Several groups in the past, including ours, have reported on non-polar light emitting diodes (LEDs) based on high-quality n-pair diode heterojunctions over r-plane sapphire substrates. These devices used GaN or AlGaN buffer layers that were deposited either by conventional MOCVD or the selective area lateral epitaxy approaches. In either case the as deposited layers were highly n-type doped, and made them suitable for the deposition of GaN/AlGaN layers or heterojunctions for the electronic devices. It also precluded a systematic study of electron transport in non-polar a-plane oriented films where such transport can possibly be lateral direction dependent using a novel migration enhanced metalorganic chemical vapor deposition (MEMOCVD) approach we have for the first time succeeded in depositing highly insulating layers of a-GaN and a-GaN:AlGaN heterojunctions over r-plane sapphire substrates. These MEMOCVD grown layers were carried at 40 torr and 1050 C and trimethyl aluminium (TMA), trimethyl gallium (TGMAs) and NH3 were used as the precursors. The TMA and the TMG precursors and NH3 were alternately supplied to the growth chamber at 6 sec long alternating pulses. The pulse overlap was avoided to minimize pre-reaction which invariably leads to degraded morphology. Both undoped and silicon doped structures were deposited and their structural, electronic and optical properties were measured. The MEMOCVD grown layers had an average optical transmission of 50% for a 0.5 um thick layer. The results show that the a-GaN layers can be doped n-type with carrier concentration as high as 2x1016cm-3 still maintaining a carrier mobility as high as 40 cm2/Vsec. In this paper we will discuss the growth details and the n-type conductivity of single layers and AlGaN heterostructures. Preliminary preliminary results of fabricating non-polar transistors will also be presented.

4:15 PM EES7.7/FF7.7
Realization of high crystallinity a-plane GaN grown on r-plane sapphire substrate for high-performance light-emitting device. Yohsuke Okadome, Yousuke Tsuchiya, Hiroko Furukawa, Kentaro Nagamatsu, Akira Honsho, Motoaki Iwata, Satoshi Tsuchiya, Hiroshi Nakamura and Isamu Akasaki; Meijo University, Nagoya, Aichi-precinature, Japan.

Although visible short-wavelength light-emitting diodes (LEDs) based on group III nitrides have been commercialized, the performance of these LEDs in longer wavelength regions, such as the green regions is still insufficient. Strong internal electric field perpendicular to the heterointerfaces of the quantum wells is thought to be the major obstacle for achieving high-efficiency green or longer wavelength LEDs. The use of nonpolar a-plane nitrides is a potential solution for overcoming this problem. High-crystallinity a-GaN is essential for achieving high-performance LEDs. We report on the improvement of the quality of a-GaN on 0.5-inch r-plane sapphire substrates by the combination of the integration of a thick AlGaN layer and lateral growth on a grooved a-GaN layer by high-growth-rate metalorganic vapor phase epitaxy (MOVPE). In this study, MOVPE-grown a-GaN layers were fabricated on a-GaN wafers grown on 0.5-inch r-plane sapphire substrates.[1] After thermal cleaning of the r-plane sapphire substrate in hyrogen at atmospheric of 1150°C, it was cooled to 1100°C, at which growth an a-AIN layer about 350 nm thick followed by a 700 nm thick a-AIN layer and undoped a-GaN layer about 2.0 μm thick were grown. Insertion of a-AlGaN is found to be effective in reducing defects in a-GaN. The grooves along the [10-10] direction were fabricated by conventional photolithography and reactive ion etching techniques. The width, spacing and depth of the groove were 18 μm, 3 μm and 2.5 μm, respectively. Subsequently, 30-μm-thick a-GaN was grown at a high-growth-rate (~55 μm/h) by MOVPE. Plan-view and cross-sectional transmission electron microscopy (TEM) images of the TEM images show a distinct reduction in dislocation density and stacking fault density on the growth region compared with the layers grown on the terrace region. AFM showed an RMS surface roughness as low as 0.26 nm on the groove. LEDs with a-GaN film as an n-type layer were fabricated on an r-plane sapphire substrate with grooved a-GaN. LEDs having the same structure were also fabricated on planar a-GaN for comparison. The output power of the LED on the groove a-GaN was about fifty times higher than that of the LED on planar a-GaN.[1] Akira Honsho, Y. Miyahara, K. Kasai, T. Kasahara, T. Ida, M. Tsuda, M. Iwata, S. Kimiyama, H. Amano, and I. Akasaki: Ext. Abstr. (56th Annual Meet 2001); Japan Society of Applied Physics and Related Societies, 2a-W-2.

4:30 PM EES8.7/FF7.8
Characterization of a-plane AlGaN/GaN heterostructure grown on r-plane sapphire substrate. Motoaki Iwata, Yohsiane Okadome, Yousuke Tsuchiya, Hiroko Furukawa, Akira Honsho, Yasuto Miyake, Satoshi Kaniayama, Hiroshi Amano and Isamu Akasaki; Faculty of Science and Technology, 21st Century COE Program "Nano Factory", Meijo University, Nagoya, Japan.

Although high-efficiency nitride-based light-emitting devices in the visible-short wavelength range are being achieved using GaN quantum wells (QWs), they still have several problems such as a strong internal electric field caused by piezoelectricity. Most of these QWs are grown on c-plane GaN, thus large piezoelectric field in the QWs is induced. Nonpolar a-plane nitrides potentially solve these problems. In order to grow well-designed device structures using a-plane nitrides, it is essential to characterize the strain in the ternary alloy layers. The strain in the a-plane nitride heterostructure is quite complicated compared with the c-plane ternary heterostructures. In this study, the strain in an a-plane AlGaN (a-AlGaN) grown on r-plane GaN (a-GaN) was characterized by X-ray diffraction (XRD). Uniaxial strain and the composition of alloys in the ternary alloy layer of a-AlGaN (a-AlGaN) on a-GaN was determined using the high-resolution X-ray diffraction profile. The a-plane AlGaN/GaN heterostructure was epitaxially grown on r-plane GaN by metalorganic vapor phase epitaxy. The a-AlGaN layer was approximately 50 μm thick grown on 4μm thick a-GaN. As the strain is uniaxial in the a-plane nitride heterostructure, the XRD reciprocal lattice space mappings had to be performed using two planes to characterize the strain in the a-plane AlGaN/GaN heterostructure. In order to determine the composition of the strained a-AlGaN grown on the a-GaN, we measured XRD 2θω scan profiles of (11-20) and (0002), and then calculated the alloy composition using elastic stress constants. The XRD rocking curve (0-2θ) of r-plane GaN was carried out around (11-22) and (20-20), where the (11-22) diffraction revealed the strain along the C-axis and the (20-20) diffraction revealed the strain along the M-axis. In the RSM around (11-22) diffraction, it was found that the diffraction spot of r-plane GaN was not located exactly above that of a-GaN, which means that the lattice constant c of the AlGaN was slightly different from that of GaN. Therefore, AlGaN was relaxed partially along the C-axis. On the other hand, the (20-20) diffraction showed that the diffraction spot of r-plane GaN along the M-axis was located exactly in positions of r-plane GaN. Therefore, the relaxation of AlGaN in the m direction must be due to the tensile stress generated during the growth along the C-axis, which is larger than that along the M-axis. Dependence of the AlN molar fraction and strain relaxation will be discussed. Acknowledgements: The authors would like to thank Mr. M. Tsuda, Kyocera Corp. for preparing r-plane sapphire substrate.

4:45 PM EES9.7/FF7.9

We investigated the growth, structural and luminescence properties of semipolar (10-11) InGaN/GaN multiple-quantum wells (MQWs) and optimized the MQW parameters for the growth of semipolar light-emitting diodes (LEDs). Conventional c-plane growth techniques cannot be used for semipolar growth since these-based LEDs and laser diodes are characterized by the presence of polarization discontinuities at the heterointerfaces of the MQWs. This gives rise to electric field and causes band bending, which results in the quantum-confined Stark effect in the MQWs. The consequence of this effect are decreased recombination efficiency, red-shifted emission, and blue shifting of the emission with increasing drive current. Semipolar planes extend diagonally across the hexagonal unit cell and form an angle with the c-plane other than 90° and the polarization vector is tilted with respect to the growth direction. This results in reduced polarization effects. Also, for specific strain states on specific semipolar planes, there will be zero net polarization in the growth direction. Therefore, optoelectronic devices grown and fabricated along semipolar direction promises to be an effective means of improving their performance over conventional devices. Recently, we have grown semipolar (10-11) and (10-13) oriented GaN films on spiral and sapphire substrate. We found semipolar growth to be stable under a wide range of growth conditions. However, in comparison to c-plane InGaN/GaN MQWs, very little is known about the properties of semipolar quantum wells. 12 periods InGaN/GaN MQW samples were grown on semipolar a-plane AlGaN by metalorganic chemical vapor deposition (MOCVD) on concurrently loaded hydride vapor-phase epitaxy (HVPE) grown (10-11) GaN templates grown on spiral substrate, and planar c-GaN templates. Effects of growth conditions, viz. temperature and reactor pressure were explored and the photoluminescence properties were investigated. The properties of the semipolar (10-11) InGaN/GaN MQWs were compared to those of c-plane. High resolution X-ray analysis revealed that the incorporation efficiency of indium in the semipolar (10-11)
InGaN/GaN MQWs was comparable to the c-plane QWs. The brightness and the full width at half-maximum of the emission from the semiconductor showed significantly increased in the pressure range of 400-500 Torr. The surface, analyzed by AFM, consisted of parallel ridge oriented perpendicular to the GaN (10-1-2) direction. Cross-sectional transmission electron microscopy was used to image the MQW structure. The period was 4 nm and a barrier width of 14 nm were determined. LEDs were fabricated on (10-1-1) GaN templates using the optimized MQW parameters had an on-wafer output power as high as 0.63 mW at 300 mA drive current. The emission of the electroluminescence peak at 459 nm with no shift with the increase in drive current, suggesting the absence of electric field in the quantum wells. This is the first demonstration of light-emitting diodes grown on semipolar GaN templates.

SESSION EE6: Nanostructured Semiconductors and Novel Materials and Devices
Chair: Robert Biefeld
Tuesday Afternoon, November 29, 2005
Constitution B (Sheraton)

1:30 PM EE6.1
Nanopatterned Growth of Ge Quantum Dots for Infrared Detector Applications. Christopher Chen, Hyung-jun Kim, Fei Liu, Song Tong, Kang L. Wang, Dongho Cha and Joo-young Lee; Electrical Engineering, University of California, Los Angeles, Los Angeles, California.

Quantum dot infrared photodetectors (QDIPs) have been studied widely for its applications on non-linear infrared detection. The 2D confinement provided by quantum dots allows for the elimination of gratings that are typically required for normal-incidence detection in quantum well infrared photodetectors (QWIPs). Furthermore, the growth of Ge dots on Si substrates provides potential for integration with existing CMOS platforms. To date, however, Ge QDIPs have typically been grown epitaxially by Stranski-Krastonov growth – producing pancake-like dots with base dimensions of 50-100 nm, heights of 7-10 nm, and an areal dot density of 10^{11} cm$^{-2}$. Such dots have poor lateral confinement, causing them to have non-ideal normal-incidence absorption characteristics, similar to quantum wells. In this work, we demonstrate infrared absorption in Ge dots with base dimensions of approximately 40 nm. These dots have potential for integration with existing molecular beam epitaxy on pre-patterned Si substrates, with an areal dot density of approximately 10^{11} cm$^{-2}$. The substrates are prepared by using diblock copolymers to create a nano-pattern on the substrate surface which is transferred to the substrate by dry etching. The size of this pattern determines the base dimensions of the Ge dots. After growth, these dots are then tested for their infrared absorption properties using Fourier Transform Infrared (FTIR) Spectroscopy. The normal-incidence absorption of the dots can be studied with FTIR by varying the polarization angle of the infrared light. We present FTIR absorption spectra for samples grown with various conditions – such as varying dot doping levels – and investigate the effects of different growth conditions on the absorption properties. We also report on the normal-incidence absorption characteristics of these dots by presenting absorption spectra for various polarization angles of infrared light.

1:45 PM EE6.2
InGaAs Quantum Dot Infrared Photodetectors Grown by Metal Organic Chemical Vapor Deposition. Lan Fu, Greg Jolley, Hark Hoe Tan and Chennupati Jagadish; Electronic Materials Engineering, RSPHYSEE, The Australian National University, Canberra, Australian Capital Territory, Australia.

The concept of using the intersubband absorption of infrared radiation has led to the development of quantum well infrared photodetectors (QWIPs) in the past decades. Quantum dot infrared photodetectors (QDIPs) are expected to show improved performance over their quantum well counterpart in detecting infrared signal due to the localized states in quantum dots. They respond to normal incidence photoconduction (where quantum wells only absorb in-plane photoconduction due to the polarization selection rules) thus eliminating the need for angular incidence, gratings or reflectors. Moreover, the discrete nature of the bound energy states of the quantum dots is expected to inhibit phonon scattering and therefore increases carrier capture and relaxation times in the quantum dots. This so-called quantum dot bottleneck effect is very useful for detectors using intersubband absorption, since photoexcited carriers are less likely to be captured into the quantum dots or to relax to the ground state before being swept away as a photocurrent, leading to improved detectivity, better quantum efficiency and increased operating temperatures. In this work we will show the results of MOVCVD grown InGaAs QDIPs. MOVCVD grown quantum dots are inherently more difficult than the complementary technique of MBE due to the higher growth temperature required and the lack of mature in-situ monitoring techniques. Nevertheless, the results presented here will show that the performance of our QDIPs to be reasonable. Various schemes will be discussed in this talk to show how the device performance could be improved. By incorporating a quantum well surrounding the dots, the so-called dots-in-a-well (DWELL) structure, enables the tuning of the quantum well wavelength and the transition type (bound-to-bound, bound-to-continuum) by simply changing the well composition/thickness. This type of device would also be more efficient in terms of lowering dark current. Results from such device will be presented here and compared to the standard QDIPs.

2:00 PM EE6.3
A Novel InSb Photodiode Infrared Sensor Operating at Room Temperature. Koichiro Ueno, Edson Gomes Camargo, Yoshifumi Kawakami, Yoshitaka Moriyasu, Kazuhiro Nagase and Kazuo Kuze; Central Research Laboratory, ASAHI KASEI CORPORATION, Fuji, Shizuoka, Japan.

A novel microchip-sized InSb photodiode infrared sensor (InSb PDS) operating at room temperature is reported. Pyroelectric sensors are generally used for detecting human body motion. However, they require the use of can-packages to insulate the sensitive element from thermal disturbances and electro-magnetic noises. The existing InSb photodetectors are put to practical use with cooling systems to reduce temperature effects. We have developed a novel microchip-sized infrared sensor with a plastic moulded package, having performance high enough for applications such as mobile electronic equipments. The basic structure of InSb PDS was grown on a semi-insulating GaAs (100) substrate by a Riber MBE-49 system, starting with the epitaxial growth of a 1 µm n+ InAs layer followed by a 0.8 µm p+ InSb layer. A barrier layer of 20 µm Alx In(1-x) Sb was grown on p− InSb layer. Then a 0.5 µm p+ InSb layer was grown on p− InSb layer as a top contact layer. As n-type and p-type dopants were Sn and Zn, respectively, and their concentrations were 10^{18} cm$^{-3}$ and 10^{19} cm$^{-3}$, respectively, the n-layer, $6.4×10^{17}$ cm$^{-3}$ for the p-layer and $2×10^{19}$ cm$^{-3}$ for the p-layer. The AlnSb barrier layer was proposed by T. Ashley et al. to suppress the Auger processes by decreasing the free carrier concentration below its equilibrium values [2]. Auger-repressed non-equilibrium photodiodes suffer from 1/f noise and high detectivity (D^*) can only be obtained at high frequencies [3]. To avoid 1/f noise, the InSb PDS was operated at zero bias (photovoltaic) mode to output an open-circuit voltage. We confirmed not only an increase in zero bias resistance but also photocurrent was increased with the use of the AlnSb barrier layer. In addition, to improve performance, 700 photodiodes ranged on a $600×600μm^2$ chip were serially connected each other. The InSb PDS has a typical responsivity of 1.900 V/W and an output noise of 0.15 µV/Hz$^{1/2}$ at 300 K. A detectivity of 2.8×1010 cmHz$^{1/2}$/W has been obtained at room temperature. The InSb PDS is a promising device for various applications such as cellular phones, mobile personal computers and so forth. J. Kim, S. Kim, D. Y. J. Wojcik, H. Y. M. E. Pierik, E. Bigan, and M. Ramezghi, Appl. Phys. Lett., Vol.67, 2645 (1995). [2] T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Pryce, and C. R. Whitehouse, Appl. Phys. Lett., Vol. 59, 1701 (1991). [3] C. T. Elliott, N. T. Gordon, R. S. Hall, and T. J. Phillips, C. L. Jones and A. Best, Journal of Electronic Materials, Vol.26, No.9, 1269 (1997).

2:15 PM EE6.4
Conductivity of InAs Nanorods Grown in GaAs Via Holes. Kangho Lee1, Aristo Yulius2, Eric Hamon3, David Janes4 and Jerry Woodall5; 1Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana; 2Department of Electrical Engineering, Yale University, New Haven, Connecticut; 3LightSpin Technologies, Inc., Norfolk, Massachusetts.

Semiconductor nanowires have attracted much attention due to their unique electrical and chemical properties. They have been used as an active device component for memory devices, memory elements, and chemical sensors. However, it still remains problematic to make good contacts to establish well-defined interfaces to nanowires. In this study, 2-terminal devices were fabricated to characterize threading dislocations in MBE GaAs nanowires. MBE GaAs nanowires were grown on top and bottom of the 200 nm GaAs layers were used to form ohmic contacts to threading dislocations. The device consists of three layers: a 50 nm n+ doped top InAs layer, a 200 nm undoped GaAs layer, and a 100 nm p+ AlGaAs doped barrier layer that was deposited above a GaAs substrate. Even though InAs is 1% lattice-mismatched to GaP, the bottom InAs layer has a smooth metamorphic surface on GaP; releasing lattice mismatch stress by the formation of ~0101 cm$^{-2}$ threading dislocations. Consecutive growth of GaAs layer and top InAs layer also induces threading dislocations with comparable density. After patterning and MESAs etching the sample, non-allloyed metal contacts were deposited on each layer. At low bias voltages, the
conductivity of this device is expected to be negligible, as indicated by Medici simulations, because of the high resistivity of the undoped and depleted regions of the barrier arising from the high donor-acceptor difference between GaAs and InAs. However, the measured I-V shows a linear characteristic, and the current density at 0.1V is about three orders of magnitude higher than the one from the simulation. This implies the existence of an additional conduction path. To investigate the characteristic of this conduction mechanism, variable temperature I-V measurements have been performed, and measured I-V data was converted to ln(I/T^2) vs. 1/T to extract the barrier height (~0.05eV) according to a Teimory emission model. One possible explanation for this phenomenon is the existence of a 1-D band of energy states located near GaAs midgap at threading dislocations sites. To check the validity of this interpretation, STM measurements of single dislocations on InAs were performed. The dislocation lines were being attenuated at the top InAs layer without the top InAs layer. The results will be presented at the conference. However, recent AFM measurements on the GaAs surface show that there exist growth defects with an estimated density of ~10^9 cm^-2. These defects are ~200nm diameter holes some of which penetrate through 20nm GaAs layer to the bottom InAs layer. Since these holes get filled with high conductivity InAs nanorods when the top InAs is deposited, the most likely explanation for observed enhanced conductivity at low bias is carrier transport via the InAs nanorods rather than by the dislocations. This is interesting in itself and worthy of discussion at the MRS meeting.

3:30 PM EE6.5
Enhancement of Si Solar Cells in the UV using Si Nanoparticles: Top Cells, Munir H. Naeef1, Mathew C. Stupka2 and Mohan D. Ahluwali2,1Physics, University of Illinois, Urbana, Illinois; 2Department of Physics, King Saud University, Riyadh, Saudi Arabia.

We integrated ultra thin films of luminescent silicon nanocrystals as top cells in polycrystalline photovoltaic (PV) Si solar cells. We examined the efficiency with 1 and 2.85 nm blue and red luminescent nanoparticle films, under UV radiation at 254, 310, and 365 nm, and as a function of the thickness of the film. Our results point to a PV efficiency enhancement of ~30-38 percent in this UV range. Our measurements also show that the nanoparticle film does not affect the PV efficiency in the visible part of the spectrum. The results are explained in the framework of down conversion of UV wavelengths to visible luminescence wavelengths with very high quantum efficiency, and transparency in the visible resulting from the wide bandgap nature of ultrasmall silicon nanoparticles. By topping the film with appropriate reflective optics, we believe we can achieve near 70 percent enhancement for UV applications.

3:45 PM EE6.6
High-efficiency Solar Cells by Novel Light Bending Using Textured Photonic Crystals, Lirong Zeng, Yashu Yi, Ching-yin Hong, Xiaomin Duan and Lionel C. Kimerling; DMSE, MIT, Cambridge, Massachusetts.

To break through the current challenge of insufficient absorption of long wavelength photons in Si solar cells, we have successfully developed a new light-trapping scheme that can enhance the optical path length by a factor of 101 times via using a textured silicon crystal structure as the backside reflector. Therefore, the quantum efficiency of the solar cell can be enormously enhanced. Our back reflector design combines reflection grating on the Si substrate with a distributed Bragg reflector (DBR), which can strongly bend the incident light almost parallel to the surface of the absorption layer with a very high reflectivity (as high as 99.98%). New Si solar cells integrated with the novel back reflector are successfully fabricated and characterized. Double side polished thin crystalline Si wafers with different thickness are used for cell fabrication in order to eliminate material quality issues associated with thin film solar cells and to make the light trapping effect prominent. Front metal contacts are designed to form interdigitated lateral p-i-n junctions. Si solar cells with different intrinsic region width and variety of metal line length are fabricated in order to maximize the light penetration into the cell while keeping high carrier collection efficiency and fairly low series resistance. Tailoring the structure of grating and DBR optimizes the backside reflector structure and the cell efficiency. Specifically, for grating, different period and etch depth are used; and for DBR, SiO2/Si and Si3N4/Si with different number of quarter wave pairs are tried. The quantum efficiency of the integrated solar cell serves as a direct indicator of the best combination of grating and DBR parameters. Solar cell efficiency improvement due to the path length enhancement effect of our new back reflector should be much more pronounced in the long solar cells. Key words solar cell efficiency, photonic crystal, grating.

4:00 PM EE6.7
Simultaneous confinement of light and microfluids by Bargg cladding waveguide, Yasha Yi, Shoji Akiyama, Xiaoman Duan and Lionel C. Kimerling; DMSE, MIT, Cambridge, Massachusetts.

Light guiding in low refractive index materials, such as microfluids and polymers, is very important for integrated biophotonics to realize lab-on-a-chip. A new planar waveguide based on CMOS technology is developed with light guiding properties of the materials or air. We have fabricated an on-chip silicon-based Bargg cladding waveguide that has hollow core surrounded by a 1D photonic crystal cladding. The cladding consists of several dielectric bilayers; while each bilayer consists of a high index slab of Si and SiN. The Bargg cladding waveguide guides light based on the Bargg reflection principle, via reflecting light at any angle or polarization back into the core. This novel waveguide allows great flexibility in selecting guiding materials; and most importantly relieves the requirements of the GaAs substrate. In the Bargg guiding method, we recently demonstrated, the light and microfluids (fluorescence DNA and Protein solution) can be confined at extremely small volume simultaneously using our novel photonic waveguide; it operates a brand new win-win principle, a core of any low-index material can be realized with our novel structure, including air. The potential applications include biomaterials sensor, amplification of the sing molecule information, and integrated bio-photons on chip.

4:15 PM EE6.8
Directional Growth of SiGe Nanowires on Insulating Films by Electric-Field-Assisted Metal-Induced Lateral Crystallization. Hiroshi Kanou, Atsushi Konjo, Taizoh Sadoh and Masanobu Miyao; Department of Electronics, Kyushu University, Fukuoka, Fukuoku, Japan.

The low-temperature formation of high quality SiGe nanowires on insulating substrates has been expected to realize one-dimensional, quantum size effect transistors with high speed operation. We have developed a metal-induced lateral crystallization (MILC) of a-SiGe by using Ni as surfactant metal. This enabled needle-like SiGe crystals (width: ~0.5μm, length: ~10μm) on insulating films. To control their growth directions, present paper examined effects of electric fields on MILC. In the experiment, a-SiGe layers (thickness: 50 nm, Ge fraction: 0~40%) were deposited on quartz substrate. Then, Ni films (thick: 15 nm) were deposited selectively on a-SiGe layers. This Ni film used as the surfactant atoms source and electric field bias voltage. The spacing between anodes and cathodes were 40-6000μm. Finally, the samples were annealed at 500°C with applying electric fields (0~4000 V/cm) between the electrodes. The crystal qualities were evaluated by using scanning electron microscopy and Raman spectroscopy. Under a low electric field (50 V/cm), random networks of needle-like SiGe crystals were formed. When the electric field was increased to 500 V/cm, needle-like SiGe crystals began to align. Under the extremely high electric fields (>2000 V/cm), all needle-like crystals propagated straight, where the growth direction was completely aligned to the electric field. These phenomena are attributed to the facts that kinetic energy of Ni atoms transferred from the high electric field (>1000 V/cm) and obtained by thermal energy. At 500°C, these results clearly indicate that flow direction of surfactant atoms (Ni) during annealing can be controlled by external high electric fields. This advantage of lateral aligned SiGe nanowires on the insulating films should be used for one-dimensional SiGe quantum transistors.

4:30 PM EE6.9
Optical Properties of Long Semiconductor Nanowires Embedded in Photonic Crystal Fibers, Dong-Jin Won1,2, Hui Fang1,2, Adrian Amenza-Correa3, Chris. E. Finlayson3, Neil Baril4, Thomas J. Scheidemantel1, Pier J.A. Sazio1, Venkatramani Gopalan1,2, and John V. Badding1;1Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania; 2Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania; 3Opto-electronics Research Centre, University of Southampton, Highfield, Southampton, United Kingdom; 4Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania.

We have developed a novel technique to incorporate highly ordered arrays of the longest semiconductor micro- and nanowires (up to ~30 cm long) demonstrated to date, by filling the holes of a Photonic Crystal Fiber (PCF) by high pressure chemical vapour deposition (HPCVD) technique. Semiconductor doped Microstructured Optical Fibers (MOSFs) potentially open up the new area of all-fiber optoelectronics, where light generation, modulation, and detection are all integrated seamlessly within a fiber. In this talk, we will discuss silicon and germanium filled PCF silica fibers. In a silicon-filled capillary fiber, the 1.55 μm continuous wave was successfully guided into the Si-core. Cutback measurement showed a propagation loss of 2.8 dB/cm, which is superior to the lowest loss of 9 dB/cm for parallel waveguides reported in literature. Next, we have developed guiding of 2.5 μm wavelength and 120 fs laser pulses through Ge-filled
capillary fibers exhibited a propagation loss of 1.6-2.8 dB/cm. Fabry-Perot etalon studies of light through the fiber were used to characterize both linear and nonlinear optical properties in Si-filled fibers. A Field-Effect Transistor based on Si-filled PCF is also demonstrated.

4:45 PM EE6.10

Nanowires (NWs) have for the past years attracted considerable attention due to the interesting fundamental properties present in such low-dimensional systems and the exciting prospects for utilizing these materials in future nanotechnology-enabled electronic and photonic applications. It has recently been shown that it is possible to form heterostructures in NWs facilitating 1-D electronics e.g. resonant tunneling diodes (RTD) and single-electron transistors [2]. In this work we report on spectrally resolved photocurrent (PC) measurements on single self-assembled InAs/InAsP1-xGaAs nanowire heterostructures. The wires were grown vertically using chemical beam epitaxy (CBE) using gold seed particles to locally increase the growth rate below the particle, i.e. at the nanowire-particle interface. After growth, the wires were removed from the substrate and deposited on a SiO2 surface. Ohmic contacts to the InAs ends of the wire were prepared using e-beam lithography. The dark current in the wire is strongly reduced by the heterostructure band offset. The PC measurements were made at 4K, and at such low temperatures the dark current was orders of magnitude less than the PC, which was about 1 nA. The wires used for PC measurements were about 80 nm thick wires with a 1 µm long InAsP central segment. The phosphor content of the InAsP segments were estimated from energy dispersive X-ray spectroscopy measurements made at the EPMA. The PC was measured using a Fourier transform spectrometer. The spectra revealed an interband excitation process in the InAsP segment with threshold energies in good agreement with the expected bandgap as based on the composition estimates. Furthermore, a strong polarization dependence was observed, with an order of magnitude larger current for light polarized along the wire compared to light polarized perpendicular to the wire. These spectrally resolved PC measurements thus confirm previously reported polarization dependence in PC measurements on nanowires [3]. We believe that these wires are promising candidates for infrared polarization sensitive photodetectors. The good contacts formed to InAs is for these wires combined with a low dark current level, that can be tuned by changing the composition of the InAsP segment of the wire. [1] M. T. Björk, et al. Appl. Phys. Lett. 81, 4458 (2002). [2] C. Thelander, et al. Appl. Phys. Lett. 83, 2052 (2003). [3] J. Wang, et al. Science 293, 1455 (2001).

TURNBULL LECTURER AWARD
TALK PRESENTATION

Tuesday Evening, November 29, 2005
5:05 PM
Grand Ballroom (Sheraton)

Isotopically Controlled Semiconductors. Eugene E. Haller, Materials Science and Engineering Department, University of California-Berkeley, Berkeley, California.

"For pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors, for outstanding contributions to materials growth, doping, and diffusion, and for excellence in lecturing, writing, and fostering international collaborations"

Scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This talk will review results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, bandstructure, and lattice constant in subtle, but for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping (NTD). Substantially sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Last, but not least, isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

SESSION EE7: Poster Session: Progress in Semiconductor Materials V - Dielectrics, Silicon-, Carbon-, and Nano-Materials
Tuesday Evening, November 29, 2005
8:00 PM
Exhibition Hall D (Hynes)

EE7.1
Thermal desorption studies of Hydrogen trapping in HfO2/Si structures. Vaishali Ukidre, Ezekiel Walker, Changdik Lim and Mohamed El Bouanani; Laboratory for Electronic Materials and Devices, Department of Material Science & Engineering, University of North Texas, Denton, Texas.

Hydrogen plays major role in semiconductor technology, due to its pervasiveness in a variety of processes such as deposition and post annealing of electronic structures. Therefore, it has become increasingly important to better understand the properties and behavior like trapping and release of hydrogen in semiconductor in order to improve electronic performance of the Metal-Oxide-Semiconductor (MOS) structures. Hydrogen is known to have most ambivalent (both beneficial and harmful effects) behavior in MOS devices. Trap transformations under annealing treatments in hydrogen ambient is known to be highly efficient in improving the device characteristics by passivating defects at the SiO2/Si interface. Comparable behavior is observed in the high-k dielectrics based MOS structures. Despite wealth of electrical knowledge there is little direct information about the actual location and concentration of hydrogen and effects under hydrogen annealing in high-k dielectrics based MOS devices. The effect of processing ambient and annealing time on the hydrogen trapping and release will be reported. Elastic Recoil Detection Analysis was used to quantify the trapped hydrogen in the bulk of HfO2/Si structures that were subjected to oxygen pre-processing followed by Forming Gas post anneals. Thermal desorption study of hydrogen from HfO2/Si structures and possible trapping and release mechanisms will be discussed.

EE7.2
The Effect of Oxide Bulk Defect on NBTI. MiJin Kim, Youngjoo Song and BongKi Mhee; Electronics and Telecommunications Research Institute, Daejeon, South Korea.

With aggressive scaling down, the reliability of the oxide films becomes the important issue. As oxide electric field approaches 10MV/cm, and gate oxide thickness under 20Å, rapid Idsat decrease and Vth shift under negative bias temperature stress (NBTI) are the major reliability issue. Widely accepted model for Negative Bias Temperature Instability (NBTI) is Reaction-Diffusion (R-D) model originally proposed by Joppson and Svensson, because the R-D model can only explain the time dependence of device parameters in NBTI. The R-D model attributes the creation of positive charges to the degradation of Si-H bond in the Si-gate dielectric interface and the rate controlling step to diffusion of desorbed hydrogen away from the interface. But R-D model has limitations in explaining the saturation effect of device parameter in long term NBTI and variation of time dependence factor (n) in the range of 0.2-0.3. Recently dispersive hydrogen diffusion model and stretched exponential model were adapted to governing the long term kinetic and AC behavior of NBTI. But only a few works have studied on the effect of oxide bulk defects on NBTI, especially on kinetic influence (time dependence factor (n) and a measure of dispersion (?)). In this work, PMOSFETs with three gate oxide material, SiO2, SiON with low and high nitrogen concentration, were examined at various time and temperature. The activation energies of NBTI have similar value regardless of gate materials. Time dependence factor (n) of SiO2 gate oxide material was 1/4 similar with previous reported data. But for SiON, NBTI became worse and fast. Time dependence factors (n) of SiON with low and high N concentration gate oxide material were about 1/2-4. When oxide defects were produced by F.N. prior to NBTS, the time dependence factor (n) of SiON with high N concentration increased to 1/2-4. Bulk oxide traps make NBTI faster. If hydrogen diffusing away from the interface was captured by the bulk defect for passivation of bulk defect, reduced hydrogen concentration in bulk can accelerate the rate of NBTI. Actually, the oxide bulk traps measured by 1/f noise indicated that increased oxide bulk trap by F.N. were annealed out by successive NBTS.

EE7.3
Diffractive MEMS in Spectroscopy. Mouli Ramani, Polychromix,
Conventional methods of performing chemical identification, namely measuring the entire spectrum of transmitted light across some pre-selected range of wavelengths, and then analyzing the collected light to identify characteristic absorption lines of target chemicals, can be improved by the use of technical developments. One goal of modern instrumentation is to make chemical-sensing measurements more efficient with respect to speed, the use of available light energy from the source, and cost, for example by using a single detector and the UV-Vis-NIR. The Micro-Electro-Mechanical Systems (MEMS) technology, currently used in telecommunications now can be applied to spectroscopy to create various patterns of “off-on” filters, passing some bands, blocking others. A technique known as Digital Transform Spectroscopy allows a complex spectrum to be collected with a single detector using a time sequence of filter patterns. An important application is the analysis of mixtures of compounds, known as “chemometrics.” Chemometric analysis extracts a weighted sum of light at different wavelengths to provide a fingerprint of the mixture. This paper reviews the properties of diffractive MEMS devices and examines their applications in chemical spectroscopy.

EFF.4

Tune the optical band gap and refractive index: the mixed anions (F, O, S) systems. Alain Demourgues, Damien Pauwels, Nicolas Viadre, Nicolas Penin, Arletta Sornek, Stephane Jobic and Alain Tressaud; IMCN-CNRS, Perpignac Cedex, France.

Design of new inorganic compounds with flexible band gap in the UV-Vis-NIR domain has attracted considerable attention for the development of new UV-Vis and near-IR absorbing, colored pigments, and solar applications in general. Solar interactions with pigments (UV-Vis-NIR) lead to relevant phenomena such as absorption and scattering allowing to define complex indexes n(λ) + ik(λ). Actually, the optical properties depend on both the electronic density of states and the refractive index function of the network polarizability can be tailored by changing the nature and the number of anions into the vicinity of cations. Hydrothermal reactions have been developed in order to prepare new divided Ti(IV), Sn(IV) or Ge(IV)-based oxy-halogenated compounds. In this series the optical absorptions appear at the UV-Vis frontier or Vis-NIR region in the case of Sn(IV) and the refractive index is always smaller than homologous oxides. The chemical bonding, the hybridization and the density of the network play key roles in the variation of the optical band gap and the refractive index. On the other hand new rare earth-based fluorosulfides and oxyfluorosulfides have been prepared by solid state routes and depending on the compositions, UV absorbers, yellow and red pigments have been characterized. In this series of mixed anions systems, chemical compositions, structural features and networks have been correlated to the optical band gap and the refractive index, i.e. the complex index of materials. Several examples will be given in order to illustrate the potentialities of these new inorganic compounds having adjusted optical band gaps from UV to Vis and IR domains as well as the tuning of the refractive index. References: Rochefort X., Gobin F., Montardi Y., Viadre N., Demourgues A., Tressaud A., Wangbo M.-H. and Jobic S. Inorg. Chem., 2006, vol. 44, pp. 3589-3593. Gobin F., Rochefort X., Pauwels D., Demourgues A. and Jobic S. J. Solid State Chem 2004, vol. 177, n 8, pp. 2833-2840. Demourgues A. and Kempf J.-Y. International Patent WO 03022742 (2003) Pauwels D., Demourgues A., Laronze H., Gravereau P., Guillon F., Isard O. and Tressaud A. Solid State Sci. 2002, vol. 4, n 11-12, p. 1471-1479.

EFF.5

Thin multiwall carbon nanotube field emitters with microchannel plate for high current emission. Raghunandan Seelaboyina, Jun Huang and Wong Kong Choi; Mechanical & Materials Engineering, Florida International University, Miami, Florida.

Electron beam source based on carbon nanotube field emitters with microchannel plate (MCP) are suitable for plasma and high power microwave applications. In this work, field emission measurements were conducted on this multiwall carbon nanotubes with a MCP, in which each channel acts as an electron multiplier, placed between the anode and cathode. An increase in brightness, uniformity of luminescent light and relatively high current density with low applied field was observed with MCP. Aligned thin multiwall carbon nanotubes were synthesized on Nb/SiO2/Si substrate by using Mo/Fe particles supported by aluminum oxide (Al2O3) nano particles as catalyst by chemical vapor deposition. High density carbon nanotubes (CNTs) were grown by varying the amount of Al2O3 template to their vertical alignment. The inner and outer diameters of the CNTs determined from the radial breathing mode (RBM) peaks of Raman spectra were in the range of 2.5-5 and 7-15 nm, respectively. These diameters were in good agreement with the transmission electron microscopy measurements. The turn-on voltage was 0.5-1V/μm with a field enhancement factor of 9.296. Emission current from the CNTs in DC mode was stable, with an average fluctuation of less than 2% for over 10 hours. Space charge effect on field emission was also analyzed using the charged particle optics (CPO) software in order to get the maximum emission current.

EFF.6

Dielectric Properties of Ultrananocrystalline Diamond Thin Films. Chao Liu1, Xincheng Xiao2, John A. Carlisle3,4 and Orlando Auciello1,2; 1Material Science Division, Argonne National Laboratory, Argonne, Illinois; 2Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois.

Ultrananocrystalline diamond (UNCD) thin film is potentially a good candidate for low-temperature ultraviolet (UV) photodetectors and capacitive switches. It has an extremely smooth surface and exceptional mechanical properties including high hardness (~90 GPa) and fracture strength (5 GPa). Its intrinsically hydrophobic surface gives rise to low adhesion between the UNCD thin film and the moving membrane during the operation of the switch. More importantly, its dielectric conductivity and dissipation characteristics can be tuned in a wide range. Compared with typical charging dielectric (for instance, SiNx), UNCD thin films can provide faster charge releasing, which prevents functional failures of the MEMS switches, such as actuation voltage drift and unintentional release of the device, due to the charge build-up in the dielectric material. In this work, the dielectric properties of hydrogen-incorporated UNCD thin films are studied. UNCD thin films are synthesized in argon-rich plasma with various percentages of hydrogen additions in the gas feedstock. Previous to the UNCD deposition, a layer of tungsten film (used as the electrode) is sputtered on a silicon wafer with a 1μm thick thermally grown silicon dioxide layer. The top electrodes that are patterned with a shadow mask are subsequently deposited onto the UNCD thin films. Impedance and DC measurements are carried out on the devices connected to the capacitors, such as the capacitive switch and the MEMS capacitive switches. It has been found that, with increasing the addition of hydrogen in the gas mixture (0-10%) during the UNCD deposition, the resistivity of the UNCD film can be tuned in the range of 106 to 1010 Ω-cm. The breakdown electric fields for those films are also a strong function of the percentage of hydrogen in the gas mixture. It is believed that the hydrogen atoms incorporated into the UNCD thin films saturate the carbon dangling bonds in the UNCD grain boundaries, which subsequently impacts the dielectric constants of the UNCD thin films. I-V measurements of the UNCD capacitors show a non-linear behavior. The dielectric constant and the dissipation factor of the UNCD thin films are measured using an impedance analyzer and a frequency range up to several MHz. C-V measurements are also performed with DC bias applied across the UNCD thin films. It is observed that the capacitance can be tuned by the applied DC bias at a given frequency. The UNCD films studied here exhibit relatively high loss tangent and leakage current, the later being a required condition for dielectric layers used in capacitive RF MEMS switches to avoid undesirable charging effects. The charge injection, retention, and releasing behavior of these devices are still under investigation. This work is supported by the US Department of Energy, BES-Materials Sciences, under Contract W-13-109-ENG-38.

EFF.7

Electron emission mechanism of diamond characterized by combined XPS/UPS/FES. Hisato Yamaguchi1, Bradford B. Pate2, M. Kudo3 and Ken Okano1; 1Department of Physics, International Christian University, Mitaka, Tokyo, Japan; 2Department of Physics, Washington State University, Pullman, Washington; 3JEOL ltd., Musashino, Tokyo, Japan.

An attempt was made to clarify the emission mechanism on diamond using combined XPS/UPS/FES. Although there have been many reports of studies on individual spectroscopy using XPS, UPS, and FES, an integrated study was rarely reported [1, 2]. Diamond has gained much attention as a cold cathode [3], however, its emission mechanism is not yet clarified. The advantage of the combined spectroscopy developed for this study is that it enables a spectroscopy effective for clarification of electron emission mechanism on diamond. The field emission characteristics of diamond can be strongly affected by surface modification [4], such as termination [5]. Correlation between surface termination obtained by XPS, electron affinity estimated by UPS, and energy distribution of field emitted electron by FES, thus, would provide distinguished information on the origin of emitted electrons. The system in which we have developed for this study consists of ultraviolet source (Thermo Electron Corp., Model 219) built in an X-ray photoelectron spectrometer (JEOL-9060MX). UFS measurement was performed using Helium gas discharge illumination at the electron energy of 21.2V, and the electron beam was monochromatized with a magnesium radiator. mgka (1253.6 eV) operated at 100W (10kV, 10mA) is used as an X-ray source in a vacuum chamber with a base pressure of 5 x 10-10 Torr. The sample could be negatively biased up to 4kV relative to the mesh grid for field emission measurements.
The system enables to obtain two-dimensional distribution for all three spectroscopy by means of a movable sample stage together with an aperture model N2 in the gas phase. The combined spectroscopy of UPS/ES is conducted on CVD diamond. The sample was first biased up to sufficient voltage for field emission. The surface is, then, simultaneously illuminated with He I excitation (hv=21.2 eV). He I illumination is turned off, emission is no longer observed at kinetic energies (KE) above 340.0 eV, while the emission below 340.0 eV remains within a slight change. This clearly indicates that the energy distribution consists of both fields and unknown factors, and partially attributed to calculation using obtained high energy cut-off of the spectra, the field-emitted electrons originate from the band gap of the diamond, approximately 1 eV above the VBM. Further investigation on correlation between surface termination by XPS, and other work on UPS/ES could effectively be moved sample holder in a matrix form with an aperture for the XPS/UPS/ES mapping.

EET.7

Materials of Young's Module of Low Dielectric Constant Materials by Atomic Molecule Dynamics Simulation, Hyeon Soo Choi1, Taehun Lee2, Hyoung Lee3, Jongseog Kim3, Kiha Hong1, Kwang Hee Kim1, Jaikwang Shin2, Hyun Jin Shin3, Hyun Dani Jung2 and Seung-Hoon Choi5; 1CSE Center, Samsung Advanced Institute of Technology, Yongin-Si, Gyeonggi-Do, South Korea; 2Insilicotech Co.,...

The interests of low dielectric materials to reduce capacitance in multilevel metal interconnects of integrated circuits are well known in the semiconductor industry. Integration centers on the low-k film's mechanical properties. Improved hardness and modulus are desirable because, when building a multilayered stack and doing sequential processing, films go through chemical mechanical planarization (CMP). In this proceeding, we investigated the mechanical strength (Young's modulus) of the typical low-k materials, and reports the fundamental understanding on Young's modulus effects by various aspects, such as, structures of precursors, density, and porosity. Using atomistic molecular dynamics simulation with experimental measurements, the Young's modulus of diamond-like amorphous silicon oxide in which 25% of Si-O-Si chains were replaced by Si-(CH3)3-Si, Si-(CH2)2-Si, Si-(CH2)3-Si, Si-(CH2)-Si, and Si-(CH2)-Si, are determined and analyzed. The predicted trends of Young's modulus of films formed by above precursors are in good consistent with those observed from experiments. The Young's moduli of materials are largely dependent on the densities of materials. Young's modulus of material decreases as the density of the material increases. The chemical properties, chain length, and connectivity of material take effects on the Young's modulus of material. Given the same densities of material the smaller number of cavities per unit volume the material has, the lower Young's modulus of material is. Based on the results, the method for the prediction of mechanical properties of materials by the combination of basic experimental measurements and atomistic simulation will be discussed.

EET.9

The effect of nitrogen addition on the morphology and quality of boron doped diamond films, Koji Iwaski 1, Mikka Nishimura1, Hidenori Gamo2, Kyoharo Nakagawa3 and Toshihiro Ando4; 1Department of Applied Chemistry and Sensor Photonics Research Center, Toyo University, Kawagoe, Saitama, Japan; 2Technical Research Institute, Toppan Printing Co. Ltd, Sugito, Saitama, Japan; 3Advanced Materials Laboratory, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.

We investigated the effect of simultaneous diborane and nitrogen addition on the electrical properties of the diamond. The growth rate is shown in table 1. The doped diamond was grown by reduced pressure chemical vapor deposition (MPCVD) method. For boron doping, diborane (B2H6) gas was introduced in the range from 0 to 10 ppm in the gas phase. Nitrogen was introduced in the range from 0.0 to 2.0 %, as well as the SEM images of the isolated diamond. The isolated diborane deposited with 0.8% N2 addition and a different amount of B2H6 addition of 10 ppm, 5 ppm, and 2 ppm in the gas phase, respectively. In the case of the lower B2H6 concentration (2 ppm), the isolated diamond showed a sphere like morphology. Contrary to this, at the B2H6 addition of 10 ppm in the gas phase, the isolated diamond crystals were grown with cubic-octahedral shapes. It was reported that the dioxide is a spherically shaped crystal. Nitrogen was incorporated into the crystal and degraded the crystallinity. The effect of nitrogen addition decreased with increase of the B2H6 concentration in gas phase.

EET.10

To reduce the writing current required for high density, high-speed and low-power Phase-change Random Access Memory (PRAM) is investigated. Especially, we proposed advanced on axis confined structure which can be reduced writing current controlled by new cell fabrication method. We also evaluated based on 84A at 0.12 um-CMOS technologies with 0.12 um-CMOS technologies. The fabrication of this structure as a result, feasibility for developing high-density PRAM in the future is presented.

EET.11

Heterojunction, Vacuum-Glass Field Effect Transistors, Michael W. Geis1, 2Sandra J. Deneault1, Keith E. Kruhn1, Michael F. Marchant1, Theodore M. Lysyanskaya1 and David L. Cooke1; 1Submicroneter Technology, MIT Lincoln Laboratory, Lexington, Massachusetts; 2Space Vehicle Directorate, U.S. Air Force Research Lab, Bedford, Massachusetts.

Electrons can float in vacuum on the surface of negative electron affinity (NEA) materials much like electrons can be restricted to the interface between two semiconductors in heterojunction devices. These electrons are bound by electrostatic attraction to the NEA material, but are quantum mechanically forbidden to enter the bulk. Liquid He, where electrons are stable on its surface for hours, and Ni, where the electrons are stable for ~100 fs, are examples of NEA materials. MSiO (Ref. 3) and diamond4 are examples of NEA insulators, but little has been done to characterize their surface electrical properties. This presentation reports on a field effect transistor where the electron channel consists of the interface between vacuum and a NEA CxOy material on a glass substrate as used as the gate. The device has a conductance of 4x10^-10 S cm^-1. With drain-source electrodes on the glass, spaced 10 μm apart, a glass insulator thickness of 2 μm and a drain-source voltage of 230 V, the calculated electron mobility is 4x10^-7 cm^2 V^-1 s^-1. This should be compared with ~ 10^-2 cm^2 V^-1 s^-1, the mobility of electrons on liquid He. The electrons on glass are lightly bound to the glass surface and an electric field as low as 10 V cm^-1 will pull them into vacuum. At higher vacuum electric fields the electrons can be pulled into vacuum with current densities of ~1 A cm^-2. The W drain-source electrodes have a work function of several electron volts, while the effective work function of the surface electron gas is ~ 0.4 eV. The insulating on the electrodes onto the glass surface is facilitated by a unique electrode geometry. The electrodes are a lattice of 50 nm of Al and 100 nm of W. During processing the Al is chemically wet etched undercutting the W layer. This undercut structure is crucial both for electron emission as a cathode. The presentation will discuss fabrication and electrical characterization of both the vacuum FET and the cathode. A theoretical model explaining the function of the undercut drain-source W electrodes and possible applications of these devices will be given.

EET.12

Materials optimization for high speed silicon optical modulators, Ling Liao1, Dean Samara-Rubin1, Doron Rubin2, Michael Morse1, Dextor Hodge3, Ulrich Kelt4, Thorkild Franek4 and Mario Paniccia2; 1Intel Corp., Santa Clara, California; 2Intel Corp., Jerusalem, Israel; 3North Carolina State University, Raleigh, North Carolina; 4Intel Corp., Copenhagen, Denmark.

We recently demonstrated a silicon-based optical modulator with an intrinsic baseband imaging rate data transmission up to 10 Gbps. Here we discuss the materials challenges associated with achieving such high speed performance. The modulator is based on a MOS-capacitor design where a gate dielectric is sandwiched between two layers of silicon. This design necessitates the deposition or growth
of silicon on top of the gate dielectric. Devices based on both polycrystalline silicon (poly-Si) and epitaxial silicon, grown using the epitaxial lateral overgrowth (ELO) technique have been tested and characterized. We discuss in detail how the different materials affect dopant activation, device transmission loss, and device speed. Experimental data suggests that the optical transmission of poly-Si is governed by dopant concentration. For example, two modulators, one with poly-Si and the other with ELO-Si, while having the same transmission loss of ~18 dB/cm, have significantly different device speeds if dopant activation, which determines material resistivity and, therefore, modulator loss. In the latter hand, we present the fabrication of Si-based poly-Si MOCVD capacitors on 4H-SiC and the reduction of interface state densities with wet oxidation and Ar annealing. The n-type 4H-SiC epitaxial wafers used in this study were obtained from Sterling Semiconductors. Poly-Si was grown by chemical vapor deposition using silane in an Encure Turbosystem system at 720°C and 100 torr. Dry and wet oxidation of the poly-Si films was performed at 1100°C for 30 to 60 minutes. The oxidation time for the poly-Si film (as compared to the case of native oxide) was expected to minimize CO generation at the interface. Typical poly-Si layers were 50 nm thick. Some samples were annealed at 1100°C in Ar for 60 minutes after oxidation. Combined high and low frequency capacitance-voltage measurements showed a relatively low interface state density (Dit) of 2.9x10^11 cm^-2 eV^-1 at 0.5 eV below the conduction band for poly-Si samples grown by wet oxidation and annealed in Ar. The poly-Si samples grown by wet oxidation with a high anneal had a higher Dit of 1.2x10^12 cm^-2 eV^-1 and the poly-Si samples grown by dry oxidation had the highest Dit of 1.8x10^11 cm^-2 eV^-1 at 0.5 eV below the conduction band. The drop of Ar after Ar annealing could result from the stresses in the poly-Si/4H-SiC interface induced by high temperature treatment. Ar annealing did not show a significant impact on the interface properties of native oxide grown on 4H-SiC. It is possible in this case that the stress relaxation is already completed during the lengthy oxidation process.

EEF 16

Besides native oxide, a variety of materials have been studied as insulators in Si-based MIS devices. Polyoxide, from oxidation of polysilicon, has the potential benefits of faster oxidation rate, uniform oxide formation and less scattering of oxide thickness. In this paper, we present the fabrication of Si-based polyoxide MOS capacitors on 4H-SiC and the reduction of interface state densities with wet oxidation and Ar annealing. The n-type 4H-SiC epitaxial wafers used in this study were obtained from Spectra Semiconductors. Poly-oxide was grown by chemical vapor deposition using silane in a Turbostar system at 720°C and 100 torr. Dry and wet oxidation of the poly-oxide films was performed at 1100°C for 30 to 60 minutes. The short oxidation time for the poly-Si film (as compared to the case of native oxide) was expected to minimize CO generation at the interface. Typical poly-Si layers were 50 nm thick. Some samples were annealed at 1100°C in Ar for 60 minutes after oxidation. Combined high and low frequency capacitance-voltage measurements showed a relatively low interface state density (Dit) of 2.9x10^11 cm^-2 eV^-1 at 0.5 eV below the conduction band for poly-Si samples grown by wet oxidation and annealed in Ar. The poly-Si samples grown by wet oxidation with a high anneal had a higher Dit of 1.2x10^12 cm^-2 eV^-1 and the poly-Si samples grown by dry oxidation had the highest Dit of 1.8x10^11 cm^-2 eV^-1 at 0.5 eV below the conduction band. The drop of Ar after Ar annealing could result from the stresses in the poly-Si/4H-SiC interface induced by high temperature treatment. Ar annealing did not show a significant impact on the interface properties of native oxide grown on 4H-SiC. It is possible in this case that the stress relaxation is already completed during the lengthy oxidation process.

EEF 17

Robust high-temperature passivation and gate dielectric materials are required for SiC analog power control devices and embedded digital fault protection circuitry to implement future military and commercial electric drive applications. These future applications will require dielectric materials that are stable at temperatures up to 350°C under operating fields of at least 1MV/cm. Thermally grown and deposited-oxidized HFO2 gate dielectrics as thin as 1.5 nm on SiC are under development but have not yet been demonstrated to provide stable and reliable MOSFET operation even at a temperature of 300°C and a gate field of 1MV/cm. Therefore, other insulators, especially those with higher dielectric constants leading to thinner insulators are preferred. In this work we have grown high quality HFO2 with a dielectric constant about 25 on SiC. HFO2 films were deposited by Pulsed Laser Deposition technique on p-doped substrates. The substrates were cleaned by standard technique to remove any native oxides. The oxygen gas partial pressure and growth temperatures have been optimized to get the best electrical (low leakage) properties on HFO2/SiC MIS device. A suitable metal contact with low contact resistance on HFO2 has been identified in this work. IV and C-V characteristics are measured on standard Keithley/HP LCR Analyzer set up. The low leakage current density of 40 nA/cm² at 200°C room temperature was recorded. The activation energy has been estimated to be around 0.64 eV and the dielectric constant evaluated from C-V measurements is in close agreement with the theoretical values. The temperature dependence I-V characteristics of HFO2/SiC based MIS devices indicate that the electrical transport is dominated by the barrier height associated with bandgap splitting between HFO2 and SiC.
The technique of selective area growth (SAG) or ion implantation are widely used to achieve the required type and concentration of carriers. The dopant activation by annealing requires annealing at temperatures of 1600 °C for n-type dopants and 1700 °C for p-type dopants. However, the annealing at these temperatures leaves the surface of SiC devoid of Si and traces of carbon. This effect also introduces nonradiative recombination centers that may hamper the device operation. We have developed a host of capping layers to address the needs of annealing to activate the dopants while retaining the surface smoothness and most importantly the stoichiometry of the surface. We have employed Pulse Laser Deposition (PLD) technique with highly optimized process parameters to grow high quality capping layers of TaC, WC, AlN, BN, and AlN/BN. In case of lower temperature (800°C) grown films, surface morphology shows agglomeration of carbonaceous defects that may hamper the device operation. We have employed a host of capping layers of TaC, WC, AlN, BN, and AlN/BN. TaC and WC will be present. Additionally, use of the stable caps for masking in selective area growth of SiC will be discussed.

EET.21

Silicon Surface Texturization Mechanism by Hydrogen Radicals Using Tungsten Hot Filament. Hiroshi Nagayoshi1, Suza Nishimura2 and Kazutaka Terashima1; 1Electronic Engineering, Tokyo National College of Technology, Tokyo, Japan; 2Material Engineering, Shonan Institute of Technology, Kanagawa, Japan.

This paper describes the surface texturing method on crystalline Si using hydrogen radicals generated by a tungsten hot filament. Texturing of silicon surface is a common approach in reducing an optical loss in silicon solar cells. In mono crystalline silicon, excellent high reflectance collection can be achieved by forming randomly distributed pyramids on (100) Si wafers using alkaline solution. On the other hand, in the multi crystalline silicon, since only a certain fraction of grains have the required (100) crystallographic orientation, RIE texturing, SF6 and C2H2 are used as reactant gas, mechanical texturization, and acidic solutions have been introduced. However, chemical etching methods generate much chemical waste. In RIE texturing, exhausted SF6 has much higher global warming effect than that of C2H2. On the other hand, C2H2 is difficult to handle. We found tungsten particles deposited on Si surface works as an etching mask against hydrogen radicals. Self ordered particle deposition pattern was obtained by increasing filament current under hydrogen ambient. Surface morphology and feature size of the texture pattern could be controlled by the particle deposition condition on Si(100) surface. Inverted pyramid structure was obtained when the particle density was high, suggesting the etching results were determined by anisotropic. Reflectance spectra of hydrogen treated Si surface using this method showed very low surface reflectance of less than 1% in the range of from 200nm to 900nm without any anti reflection coatings. The particles deposited on silicon surface can easily be removed by SF6 + HI+303 solution. This method is also effective on the texturing of Si(111) wafer, having a potential for the texturing on multi-crystalline silicon.

EET.22

Synthesis of visible-photoluminescent silicon nanocrystals embedded in SiO2 film by pulsed laser annealing. Masashii Kitamura1, Wakana Hara1, Satoru Aida1, Akifumi Matsuda2, Wataru Tsuji3, Yoshiki Takagi3, Taiji Matsumoto3, Takao Hiraide3, Hidey Yamada3, Kenseki Akiyama4, Osami Sakata2, Akiko Kitan2 and Manoru Yoshimoto1; 1Tokyo Institute of Technology, YOKOHAMA KANAGAWA, Japan; 2University of Science and Technology, Kitasato Yamanashi, Japan; 3Industrial Technology Center of Tochigi Prefecture, Utsunomiya Tochigi, Japan; 4Kanagawa Industrial Technology Research Institute, Ebina Kanagawa, Japan; 5Japan Synchrotron Radiation Research Institute, Spring-8, Sayo Hyogo, Japan.

In recent years, significant efforts have been focused on the formation and the characterization of nanocrystals, due to their potential to extend the electronic and optical properties. A nanometer-sized Si crystal exhibits strong room-temperature luminescence when they embedded in SiO2 layers and have an optical stability suitable for device applications. The Si/SiO2 multilayers have been used for a number of procedures, such as co-deposition of Si and SiO2, implantation of Si into SiO2, etc. SiO2 could be easily ablated by excimer laser beam than SiO2, which might result in further precipitation of Si nanocrystals by laser annealing, so we use a SiO2 target in place of SiO2. Here, we report on the new method for fabrication of Si-based photoelectric materials by Excimer Laser Annealing of amorphous SiO thin films. The SiO films were prepared by pulsed laser deposition method using a SiO target. We have fabricated Si nanocrystals embedded in the SiO film using KrF excimer laser annealing for the SiO films in high vacuum. The laser annealed SiO films exhibited a sharp Raman peak at 520 cm-1 and synchrotron X-ray diffraction (XRD) pattern of distinct crystalline Si, which indicates the formation of Si nanocrystals in the SiO films. TEM observation also proved the existence of Si nanocrystals with a size of 3-5 nm which agree fairly well with the result of SR-XRD. For the SiO films including Si nanocrystals, the strong photoluminescence of red and green have been observed at room temperature.

EET.29

Characterization of Recessed S/D SiGe on Thin-Body SOI for PMOS Enhancement. David Theodore1, Peter L. Fejes1, Michael Canonic1, Veer Dhandapani2, Da Zhang3, Qiuhua Xie3, Bin-Yen Nguyen4, Pierre Tomasinis, Chris Werkhoven2, Chantal Arena3 and Henry Hauri3; 1Advanced Process & Reliability Lab, Freescale Semiconductor Inc., Tempe, Arizona; 2Advanced Products R&D Lab, Freescale Semiconductor Inc., Austin, Texas; 3ASM America Inc., Phoenix, Arizona; 7575
Semiconductor chip functionality has been doubled approximately every two years by reduction of transistor dimensions. As transistor gate-lengths are reduced to 60 nm, and below, new materials (such as SiGe, SOI, high-k and metal gates) and novel approaches (such as SiGe stressors, multiple-gate transistors) are needed to further improve transistor performance. Carrier mobilities can be improved by the use of strained Si channels, resulting in lifting of heavy-hole light-hole degeneracy in p-type Si, and lifting of the degeneracy of different valleys in n-type Si with consequent suppression of inter-valley electron scattering. Strained Si channels can be generated by the use of strained Si channels, resulting in lifting of heavy-hole light-hole degeneracy in p-type Si channel. The use of a compressive strain can enhance p-type carrier mobility in a manner that is useful for PMOS devices. The use of Si/D SiGe can improve the performance of SOI substrates for improved electrical isolation of devices. In the present work, techniques such as scanning electron microscopy, cross-section transmission electron microscopy, and Raman spectroscopy were used extensively to aid the development of SiGe S/D stressors on SOI substrates for PMOS performance enhancement. The results of SiGe selective-epitaxial growth under different growth conditions, is-situ boron doping, superficial-Si morphology, and varying S/D etching and integration approaches were investigated and will be reported.

EF 24

Growth of High Quality Ge Epitaxial Layer on Si(100)

Substrate Using Ultra Thin SiGe Buffer. Junko Nakatani, Hiroki Date, Supaka Mashiro and Manabu Ikemoto; Electron Device Equipment Div., ANELVA Corporation, Fuchu-shi, Tokyo, Japan.

Methods for forming Ge epitaxial layer on Si (100) substrate have been vigorously sought due to potential applications of such structure as a virtual substrate for H-V devices on Si. Various methods were proposed to realize low threading dislocation density and smooth surface. To date, such methods involve more than one of thick (micrometer order) SiGe buffer growth process, high temperature annealing steps and CMP process, which could compromise reliability and suitability for production. In this study, we report feasibility of a thin (in the order of 10nm) SiGe buffer layer to realize pure Ge epitaxial layer with good crystallinity, low threading dislocation density, and smooth surface without high temperature annealing steps and CMP process. As a result, we achieved shorter time for growth of practical thickness of crystalline Ge on Si (100) substrate, and also get the high quality Ge epitaxial layer which has low threading dislocation density with very smooth surface. Ge epitaxial layer and underlying thin Si1-xGex buffer layer were grown on Si(100) substrate at 450–520 °C. Two-step growth process was employed to grow Ge epitaxial layer on the buffer layer. Ge seed layer was grown at a low temperature (350–400 °C), followed by Ge thick layer growth at a high temperature (520–540 °C). XRD, TEM and the wear resistance of Ge layer were used for characterization of Ge epitaxial layer. Optimization of growth temperature and source gas flow rate ratio enabled to obtain an effective buffer layer thinner than 10nm. The thin buffer layer realizes process that are limited by which is why high quality Ge surface is realized without crosshatch structure. The buffer thickness is 1/100 to 1/1000 than that of previously mentioned methods using thick SiGe buffer layers. Thin SiGe buffer also enabled process time shortening for Ge seed layer growth as two-dimensional Ge layer was formed faster on the thin SiGe buffer layer than on Si. XRD of the Ge seed layer showed 97% relaxation as grown and fully relaxed at 550 °C. The threading dislocation density of the top Ge layer was estimated below 1E10/cm² by TEM and EDP. The source gas flow rate was optimized around 1E11 cm³/min to reduce the density of dislocations along [110] at the interface between the SiGe buffer layer and the Ge layer, and the distances are 9.5nm constantly in cross-sectional TEM image. We confirmed the surface roughness of the Ge epitaxial layer by AFM AFM.

EF 25

A Novel Method to Fabricate Recessed SiGe Source/Drain using a selective Si and SiGe Epitaxial Growth without Etching Process. Sang Hoon Kim, Hyun Cheol Bae, Ja Yol Lee and Sang Heung Lee; SiGe Device Team, High Speed IC Research Department, Electronics and Telecommunications Research Institute, Daejeon, South Korea.

Strain-induced modification of the electronic band structures is of great importance to improve the carrier mobility and drive current in metal-oxide-semiconductor field-effect transistors. A great deal of efforts have been made to introduce strain in the transistor channel region, the technique employing selective epitaxial SiGe in the recessed source/drain region to produce a longitudinal uniaxial compressive strain, introduced to p-channel, in order to improve hole mobility by 50%. On the other hand, the current techniques for formation of the recessed SiGe suffer from degradation of Si crystal quality because the source/drain region is usually dry plasma etched, which would cause damage. For this reason, we report a fabrication method of recessed SiGe source/drain based on selective Si epitaxial growth, followed by selective re-growth of in-situ doped SiGe without dry etching process. It is composed of two parts. First, selective epitaxial growth was carried out at 760°C in a high pressure of SiH4, GeH4 and HCl gases. This fabrication method does not create any defects and surface contamination at the Si surface. Furthermore, the sidewall profile has higher degree of anisotropy in the recessed SiGe source/drain region. In addition, it can form SiGe with good profile, dry plasma etch. The stress becomes more compressive with anisotropic profile than isotropic, which makes this process very attractive for manufacture. The process has been developed in our standard ASEM Epsilon One reactor and investigated by transmission electron microscope and atomic force microscope to characterize the SiGe source/drain surface morphology. We also evaluated the strain field in a transistor with recessed SiGe source/drain region and examined the lateral and vertical strain components with the dependence of boundary conditions on device structure.

EF 26

Enhanced fmax and Low Base Resistance in SiGe HBT with Nickel Silicidation. Hyun-Chool Bae, Sang-Hoon Kim, Young-Joo Song, Seong-wook Yoo, Sang-Heung Lee and Bo-woo Kim; Electronics and Telecommunications Research Institute, Daejeon, South Korea.

As the SiGe dense technology advances to deep sub-micron, Ti silicidation has a problem of the resistance increase as the line width reaches the lower sub-micron range. Thus, the Ni silicidation process is appeared to be a suitable candidate to replace Ti silicidation. The SiGe HBT base is composed of a thick cap Si layer, a SiGe layer, and a seed layer. The extrinsic base is formed during SiGe/Si epitaxy, and the nickel is deposited and heated together with the Si/SiGe/Si layer as an interconnection process for the sake of the reduction of contact resistance. Ni silicidation has several advantages over Ti silicidation when used in the SiGe HBT fabrication. The merits are low temperature silicidation process, low sheet resistance, and one step silicidation process. In-situ heavily doped Si/SiGe/Si base layers and other Si epitaxial layers were grown in RPCVD system. Self-aligned Ni silicide on Si/SiGe/Si base was formed in a RTA chamber by one step annealing. A 50 nm thick nickel film which had the lowest value of sheet resistance was then deposited by M2 sputtering system at room temperature. The silicidation reactions were then performed in the same system in As ambient for 30s with different temperature. The nickel layers not reacted on the base were removed by wet etch process after annealing. Ni silicide layers on all electrodes of the emitter, base, and collector of the SiGe HBT were formed simultaneously in a self-aligned manner. Compared with the Ni silicide, the Ni silicide exhibits a lower sheet resistance of under 2 Ω/ . In the fabrication of the SiGe HBT, Ni silicide is formed after patterning of the emitter layer. The region below the emitter and of the rest of base are defined as the intrinsic base, and the extrinsic base, respectively. The Ni silicide is formed in the RTP chamber by two step annealing. But, Ni silicide is formed just one step annealing that is performed at 600 oC for 30 sec. REXB of the Ni silicidated is below 30% of Ti silicidated. The Ni silicidated SiGe HBT showed improved fT and fmax values. This means that Ni silicidated SiGe HBT has a decreased RB. In terms of the two parameters, the fmax is more sensitively varied with RB. Principally, fT is inversely proportional to the sum of the base transit time which is influenced by the fmax, and fmax is also influenced by the affected factors of fT and RB. The SiGe HBT with Ni silicide reveals about 10% improvement in fT and fmax with respect to the sheet resistance and REXB, which were reduced about 90% and 70%, respectively. Therefore, the base resistance of device would be reduced to improve fmax. We have fabricated SiGe HBT with Ni silicidation in order to improve the sheet resistance, specific contact resistivity on Si/SiGe/Si base. As a result, we obtained a HBT with low base resistance and REXB, which enhanced fT about 10%. Also, the developed Ni silicidated contact technology is suitable for the SiGe BiCMOS process, especially in sub-micron devices.

EF 27

Kinetically controlled superstructural phases at the Sb/Si-Si interface. S. M. Shrivaprasad1, Mahesh Kumar2, Vinod Kumar Palliv1 and G Govind1; 1 Surface Physics and Nanostuctures, National Physical Laborator, New Delhi, India, 2 Department of Physics and Nanostuctures, National Physical Laboratory, New Delhi, India.

The adsorption of Sb on the high index Si (5 5 12) has been studied at higher substrate temperature (HT) (800°C), using surface characterization techniques like Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED), and Electron Energy Loss Spectroscopy (EELS). The surface morphology of this high index Si (5 5 12) surface changes with Sb deposition and temperatures of 110 °C. We performed the study of Sb adsorption and desorption on the Si (5 5 12) substrate held at different temperatures. The different pathways adopted during adsorption and desorption have suggested a dominant role of kinetics I forming various surface phases on the Si (5 5 12) substrate. The adsorption at room temperature resulted in the formation of (225) surface phase, while the adsorption at 800°C resulted in the (337) phase. The sequential thermal desorption of the room temperature adsorbed surface rearranged to form the formation of (337) phases at 800°C, with anisotropic growth along one direction. While the adsorption at 800°C resulted in the formation of anisotropic (337) phases, the further increase in the coverage formed a 2x 2 (225) phase. Annealing this 2x 2 (225) phase again resulted in the formation of anisotropic (337) phase. Thus formation of interface by controlling the growth kinetics can result in the formation of various tailored structures with desired properties.

EE7.28

Fabrication of Planar SiON Optical Waveguide and Its Characterization

Yu Jung Cho and Yeong-Chul Kim; Materials Engineering, Korea University of Technology and Education, Chungnam, South Korea.

Planar silicon oxy nitride (SiON) optical waveguides were fabricated using PECVD (plasma enhanced chemical vapor deposition). Silicon dioxide (SiO2)-based planar optical waveguides fabricated on Si substrates are becoming key components for optical communication systems. Many published works that refer to waveguide structures are based on deposited pure SiO2 cladding layer and doped silicon nitride (Si3N4) or SiON for the core layer. The cladding layer has a lower refractive index than the core one. Among materials considered for waveguides, SiON is the most promising because of its low cost, low optical loss, and high coupling efficiency with optical fibers. The major advantage of SiON, however, is given by the tunability of the refractive index over a wide range (n = 1.45–2), giving a large degree of freedom to integrated optics design. In this study, SiO2 and SiON films for a planar optical waveguide were deposited by using PECVD from appropriate gaseous mixtures of pure silane (SiH4), nitrous oxide (N2O) and ammonia (NH3). A p-type Si wafer with (100) orientation was used as the substrate. SiO2 and SiON films were obtained at low temperature (300°C) with the variation of RF power and gas flow rates. SiO2 and SiON films as under-clad and core were deposited with a thickness of 5µm. SiON film was etched selectively by RIE using SiO2 etch mask. SiON-SiO2 core and SiO2 core as over-clad. However, the use of the hydrogen-containing gas in the PECVD method inevitably induces hydrocarbon species such as N-H, O-H and Si-H in the core layer, causing harmful absorption loss. Hence, a technique for improving on the properties of the films was characterized by scanning electron microscopy and atomic force microscopy. The light propagation and optical mode of the fabricated 1x4 multi-mode optical splitters were measured using 650nm wavelength laser light. However, it has not been known why the multilayer silicide could show the good thermal stability. In this study, we have investigated the structure of nickel-coated silicide under different behavior at high temperature. Nickel and cobalt were deposited on B doped p-type (100) silicon substrate sequentially by magnetron sputtering system. Rapid thermal process (RTP) was conducted at 950°C with the short pulse using 120 W/cm2 power. Before conducting the second RTP, the sample was etched in a chemical to remove the residual metal. The sample was then annealed at 550°C for 30min in a furnace under reduced atmosphere by flowing nitrogen at 100 sccm. This experiment was employed to investigate the structure and composition of the nickel-cobalt multilayer silicide. Nickel monosilicide and disilicide are NbP structure and CaF2 structure, respectively. We could observe by TEM that nickel monosilicide is the dominant structure. No Ni-Co-Si ternary phase was detected in this study. We could estimate that nickel-cobalt multilayer silicide forms slower than nickel monosilicide during the high temperature heat treatment and, therefore, indicate that nickel-cobalt multilayer silicide could be more stable at high temperature than nickel silicide.

EE7.30

Thermal of Self-Heating in Strained Si n-Channel MOSFETs on SiGe Virtual Substrates

Huda Sankar Dhar, Gautam Kumar Dalapati, Sanatan Chattopadhyay, Kelvin Kwa, Sarah Olsen and Anthony O'Neill; School of Electrical, Electronic and Computer Engineering, University of Newcastle upon Tyne, Newcastle, United Kingdom.

Moore’s law has been increasingly difficult to maintain in conventional Si technology and strained silicon (strained Si) is being considered to push the boundary for conventional complementary metal oxide semiconductor (CMOS) platform. A thin epitaxial film of silicon grown on a relaxed Si1-xGex virtual substrate (VS) is under biaxial tensile strain resulting in enhanced electron and hole mobility. In this work, deep submicron n-channel MOSFETs were fabricated with strained Si channel thickness of 6.0 nm on 1.0 µm thick relaxed Si1-xGex virtual substrates (x = 0.2, 0.25, and 0.3) have been fabricated. Although, a significant drive current enhancement in the strained Si devices has been achieved in both the linear and saturation regions compared to conventional Si devices, a considerable reduction in drain current in the linear region and a negative slope in the saturation region has also been observed. This reduction in drive current is attributed to the self-heating effect in the strained Si MOSFETs fabricated on a thick relaxed Si1-xGex virtual substrate. The thermal conductivity of Si1-xGex alloys is significantly lower than that of Si and it decreases with increasing Ge content in the alloy. Thus, during the dc operation of the device, the strained Si n-channel MOSFETs on Si1-xGex VS experiences a significant temperature rise due to self-heating, and as a consequence, the drive current is reduced. It is therefore necessary to understand and model the challenges posed by self-heating in strained Si devices, prior to its implementation in real circuit applications and mass production. The variation of thermal resistance and thermal heating length has been determined for different VSs and also for thin strained Si on thick Si substrates. The self-heating effect has been modelled considering the heat flow equations and thermal resistance in the channel. The amount of generated heat, and hence the temperature, varies with Ge content and the maximum temperature is obtained by 50% Ge in the VS @ W/L = 10 µm/0.7 µm. An analytical drain current model has also been predicted using the estimated rise in temperature due to self-heating with the inclusion of parasitic source - drain (Red) resistance. The model is proved to be accurate when compared with experimental drain current - drain voltage (Ids-Vds) characteristics.

EE7.31

Abstract Withdrawn

EE7.32

X-Ray Absorption Measurements of Strained-Silicon-on-Insulator (SOI)

Zheng Hu1, Yu Ding2, Junai Zhang1, Zhihe Li1, Fan Zheng1, Franz J. Himpel1,2, Donald E. Savage4, Xiaoxiong Liu2 and Max G. Lagally1,2; 1Material Science Program, Univ. of Wisc.-Madison, Madison, Wisconsin; 2Physics Department, University of Wisconsin-Madison, Madison, Wisconsin.

Because of a large enhancement of the mobility of electrons, strained silicon (sSi) permits a significant improvement in the performance of electronic devices. Much work has been done on the compressively strained silicon-germanium alloys, but relatively few results exist on the electronic structure of tensely strained silicon. We present a comparison of x-ray absorption measurements of tensely strained Silicon-implantor (sSOI) and Silicon-on-insulator (SOI). We find that, although the conduction band minimum (CBM) splitting and shift match theoretical predictions and other measurements, this 2p core level also shifts due to the strain, something that had not been observed or expected. Because of the density of empty states in the top several nanometers of a material, it is ideal
for measuring the strain on the surface. We relate our results to our ongoing work on elastically relaxed free-standing membranes made from SiGe/Si layers [1]. [1] M. Roberts et al., in preparation Research supported by NSF MRSEC. Research conducted at the Synchrotron Radiation Center, University of Wisconsin-Madison, which is supported by the NSF under Award No. DMR-0084410.

EET.33 Element Distribution and Special Crystallinity of Catalyst in β-Ga2O3 Nanowire Growth in Vapor Reaction. Yuun Lee, Martin A. Crimp and Jianming Zhang; Michigan State University, East Lansing, Michigan.

We have used advanced energy dispersive X-ray spectroscopy (EDS) techniques to study the element distribution and selected area electron diffraction (SAD) technique to investigate the crystallinity of β-Ga2O3 semiconductor nanowires. EDS mapping indicates the catalyst location of the Ga2O3 nanowires, and EDS mapping also extends into Ga2O3 nanowires beyond tip to form a interface between Ga2O3 nanowire and catalytic tip. Combining SAD and EDS quantitative analysis, continuous solution-solid regions are observed at catalytic tip surface and the termination of nanowires. Based on the assumption that nanowires grow from solid-solution, a mechanism for the nanowire growth is proposed. The new growth mechanism explains well the element distribution and different crystallinity along nanowire. Crystallinity of the nanowires is also examined by high resolution transmission electron microscopy.

EET.34 Semiconductor Nanotemplates for Nanofabrication. Ion Tighineanu1,2, Eduard Monaico3, Lilian Sirbu4, Sergiu Albu2, Veaceslav Ursaki1,2 and Robert W. Boyd1; 1Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, Moldova; 2National Center for Materials Study and Testing, Technical University of Chisinau, Moldova; 3Institute of Optics, University of Rochester, Rochester, New York.

In contrast with high-resistance porous alumina, semiconductor nanotemplates may play an active role in nanofabrication. In particular, the semiconductor component can be responsible for the high conductivity of polymer-semiconductor nanocomposites fabricated by infiltrating the pores with conducting polymers. Taking into account the compatibility with microelectronic technologies, semiconductor nanotemplates are promising for application as substrates for nanoheteroepitaxy of high-quality materials. In this report, we present results of development and characterization of semiconductor nanotemplates based on II-VI compounds such as ZnSe and CdSe using electrochemical and chemical wet etching techniques [1]. Ordered spatial distribution of nanochannels is reached due to self-arrangement phenomena. Development of ZnSe nanotemplates transparent in the visible region is of peculiarity interest. We demonstrate the possibility for nanofabrication of ZnSe substrates in a controlled fashion. Note that the chemical composition of the porous skeleton of ZnSe: 2.5D structures are explored as well, using the possibility to modulate the diameter of pores in a periodic fashion. Layers and free-standing membranes with the pore diameter ranging from 40 to several hundreds of nanometers can be fabricated using the proposed technology. According to our results of photoluminescence characterization, the nanotemplates based on ZnSe and CdSe are promising materials for the development of random lasers. We show the possibility to cover the internal surface of nanostructured layers and membranes by metal dots and thin films using novel chemical-electrochemical approaches [2]. This work was supported by the U.S. Civilian Research and Development Foundation under Grants nos. MR2-995 and ME2-2527. [1] I.M. Tighineanu et al., Appl. Phys. Lett. 86, 063115 (2005); [2] A.I. Dikusar et al., Electrochem. Sol.-State Lett. 8 (3), C51 (2005).

EET.35 MnAs Nanocluster Formation on GaNAs/InP (111) Layers Grown by Metal-Organic Vapor Phase Epitaxy. Shinnjiru Hara and Takashi Fukui; Research Center for Integrated Quantum Electronics (RCIQUE) and Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan.

Ferromagnetic nanoclusters hybridized in III-V compound semiconductors (FM III-V hybrids) and III-V compounds-based diluted magnetic semiconductors are very promising for realizing nano-spintronic devices using not only the charge but also the spin of carriers. In MnAs/GaAs materials system, which has been most extensively investigated, MnAs thin films are grown on GaAs layers by molecular beam epitaxy (MBE). We have pursued FM III-V hybrids, in particular, using MnAs nanoclusters embedded in GaNAs/InP (001) layers grown by metal-organic vapor phase epitaxy (MOVPE) [1, 2]. In this work, we demonstrate MOVPE growth and the successful formation of novel MnAs nanocluster structures on GaNAs/InP (111) surfaces. (111) crystallographic orientations of zinc-blende structures are promising only for the growth of carbon nanotubes using selective catalytic growth of carbon nanotubes [3] but also for the formation of MnAs nanoclusters with NiAs-type hexagonal crystallographic structures. Tri-methyl-gallium (TMGa), tri-methyl-indium (TMIIn), tertiary-butyl-phosphine (TBP) and arsine (AsH3) were used as source materials for the MOVPE growth of GaNAs and InP. Bis-(methyl-cyclopentadienyl) manganese ((MeCp)2Mn) was chosen as a manganese organometallic precursor. After the growth of GaNAs layers on InP buffer layers, (MeCp)2Mn was introduced to the MnAs layer by MOVPE. All the layers were grown at 600 °C on InP (001), (111) A and B wafers. Atomic force microscopy (AFM) was used to closely investigate structural characteristics of MnAs nanoclusters. Initially, GaNAs layers grown on GaNAs buffer layers were confirmed to have a stepped surface without any nanoclusters by AFM. However, we find that nanoclusters are formed on GaNAs/InP (001), (111) A and B surfaces after the growth of MnAs. Hexagonal nanoclusters with well-defined crystallographic facets with respect to the substrate are formed on (001), (111) A and B surfaces, whereas rectangular nanoclusters on (001) surfaces. Hexagonal shape of the nanoclusters on (111) surfaces is presumably due to NiAs-type hexagonal crystallographic structures of MnAs. The typical nanoclusters measured about 3 nm in diameter and 6-20 nm in height. On (111) B surfaces, in particular, by increasing a partial pressure of (MeCp)2Mn in a supply gas, the lateral size of the nanoclusters is increased, whereas almost no change in height. The nanoclusters observed on (111) B surfaces are mostly elongated toward a [10] direction. The experimental results in this work, therefore, indicate that MnAs nanoclusters are grown twodimensionally on (111) B surfaces after the nucleation of nanoclusters. The size of MnAs nanoclusters on GaNAs/InP (111) surfaces can be controlled by changing partial pressures of (MeCp)2Mn during MOVPE growth. [1] S. Hara et al., J. Cryst. Growth 201, 300 (2004); [2] S. Hara et al., Nanotechnology, 10, 857 (2005); [3] J. Motohisa et al., J. Cryst. Growth, 272, 180 (2004).

EET.36 Platinum Nanoparticles as the Charge Storage for Nano-Floating Gate Memory Application. Byoungju Park, Dong-Won Kim, Hyunsuk Kim, Samjong Choi, Kyongnag Cho and Sangki Kim; Electrical Engineering, Korea University, Seoul, South Korea.

The charge storage effect in platinum nanoparticles (Pt NPs) synthesized by an alcohol reduction have been investigated. The synthesized PVP-Pt NPs (~4nm in size) were confirmed by high resolution transmission electron microscopy. PVP-Pt NPs acting as the roles of charge storage nodes have been incorporated into a metal-oxide-semiconductor (MOS) structure (p-Si/SiO2/Pt NPs/A12O3/Al) for nano-floating gate memory. The characteristics of current and capacitance versus voltage were measured. The fabricated devices showed low level leakage current density (~25-50A/cm2 at 10V) and exhibited large hysteresis loop (ΔVth = ~13V) in capacitance-voltage (C-V) curve measurement. The devices without Pt NPs. This result was caused by the charge storage effect of Pt NPs embedded in oxide layers. The direction of hysteresis loop in C-V curve regime was the sweep and stress condition was also investigated.

EET.37 Properties of Electro-Luminescence Devices with Silicon Nano-Crystals Prepared by Laser Ablation Method as a Light Emitting Material. Akira Sugimura, Motokazu Koyama and Ikuo Uenoy; Department of Physics, Konan University, Kobe, Japan.

Silicon nano-crystal material has attracted much interest because of its applicability to future light emitting devices, although its properties are still necessary to be improved. Previously, we showed that Si nano-crystals prepared by the laser ablation method in the hydrogen atmosphere provide us good quality, high efficiency photoluminescence (PL) when the ablation condition is optimized [1]. Thus, we fabricated electro-luminescence (EL) device structures with this Si nano-crystal material and studied their optical and electrical properties in order to investigate device performance limits caused by the materials used in the EL device. The device structure is as follows. Si nano-crystal layer is prepared by aluminum electrode. It is then capped by indium tin oxide (ITO) material [2], which is contacted to the other electrode. Isolations between devices and electrodes are made with SiO2 space regions. The peaks waveforms and studied various types of devices of the active region. From the EL device fabricated using the optimized condition, we observed intense and visible light emission at room temperature, when the input current is as high as sub-milliwatt range. The peak wavelengths of the emission spectrum of the present device is about 900nm, which is longer than that of the photo-luminescence spectrum of the Si nano-crystals prepared by the same method. We measured current-voltage characteristics, which indicates nonlinear and irreversible dependences. It is found that optical output intensity.
indicates linear dependence on the electric current in the weak current region, while it transfers to the square dependence when the current exceeds a certain value. These behaviors can be explained by ionization by accelerated electrons plays an important role in creating electrons and holes in the device. Degradation of LED optical output power is also studied. It is found that the degradation is caused by the decrease of the current, and this decrease is originated from the oxidation of the Si nano-crystal surfaces. In conclusion, we studied the properties of the EL device with Si nano-crystal active layer and found that the device performance strongly depends on the electrical properties of the nano-crystal layer as well as its optical properties. [1] M. Inada et al., Materials Science & Engineering B 101(2003) 283. [2] T. Yoshioka et al., J. Appl.Phys., 63, (1998)5427

EE4.38
Self-Assembled Growth of Semiconductor Nanostructures for Electrical and Optoelectronic Applications. Chunjing Wei1, Andrew See Weng Wong2, Dai-Joon Kang3 and Mark E. Welland4;
1Nanoscience Science, University of Cambridge, Cambridge, Cambridge, United Kingdom; 2Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, Cambridge, United Kingdom.

Control of size and dimensionality of nanostructure to tune its properties has already been shown, however to date no reports have demonstrated the ability to control both the dimensionality of the nanostructures and the assembly of the nanostructures into a highly ordered system. Here we report a vapor based approach to control the morphology in addition to the ability of self-assembling semiconductor nanorods into a metamorphosis of architectures. By observing the crystal orientations during growth, and using template, we can organize multi-dimensional Si nanowires and SiC building blocks into a hierarchical heterostructure arrays. The synthesis of different dimensions and morphologies of Si nanowires were carried out by using proper crystallographic faces of silicon substrates, and ZnO while the synthesis of SiC nanowires were carried out using methane gas and Si powder. Coaxing these semiconductor nanorods into self-assembling is an avenue that we are exploring since the ability to control the order of self-assembly allows us to design nanoscale devices and systems. Unlike the artificially ordered system, such as the existing integrated circuits technology, self-assembled processes allow the creation of complex device architectures which depends solely on the intrinsic ability to control the order of self-assembly. In this method, a promising route to organize nanostructures into the future generation of complex nanodevices which would otherwise be very difficult to fabricate directly. Both electrical and optical properties can be derived from the as-grown semiconductor nanostructures whereby the potential of fabricating transistor devices can be realized with its well-defined linear I-V characteristics as well as feasibility of fabricating optoelectronic devices can be shown with the significant UV light emission.

SESSION EE8: Zinc Oxide Materials and Devices
Including Alloys I
Chair: Mike Callahan and Andrea Osinsky
Wednesday Morning, November 30, 2005
Constitution B (Sheraton)

8:00 AM EE8.1
Vacancy defects in electron-irradiated ZnO: Filip Tuominen1, Kimmo Saarinen1, David C. Look2, and Gary C. Furton2;
1Laboratory of Physics, Helsinki University of Technology, TKK, Finland; 2Semiconductor Research Center, Wright State University, Dayton, Ohio; 3Physics Department, Wright State University, Dayton, Ohio.

Due to recent progress in crystal growth and unique piezoelectric, optical and electrical properties, zinc oxide (ZnO) can be considered as a serious alternative to gallium nitride (GaN) for use in optoelectronic devices. The microscopic processes behind the high radiation hardness of ZnO need to be understood in order to uncover all the potential applications of the material. The role of vacancies in both self-compensation and the high radiation hardness can be determined by positron annihilation. Our earlier positron studies have shown that the Zn vacancy acts as a domino-anion-compensating center in as-grown n-type ZnO [1]. Here we have used positron annihilation spectroscopy to study the introduction and recovery of vacancy defects in electron-irradiated n-type ZnO. The irradiation (E, = 2 MeV, fluence 6 x 10^{17} cm^{-2}) was performed at room temperature, and isochronal annealing were performed from 300 to 600 K. In addition, we used monochromatic illumination of the samples during low-temperature measurements. We distinguish vacancy defects on both the Zn and O lattice sites. In addition, we observe negative ion type defects, which are attributed to O interstitials or O antisites. The Zn vacancies and negative ions act as compensating centers and are introduced at a concentration [V_{Zn}] \approx \phi_{ion} \approx 2 \times 10^{16} cm^{-2}.

The illumination experiments show that both the Zn vacancies and the negative ion defects have an ionization level close to 2.3 eV. The O vacancies are known to be ionized at 3.5 eV. In contrast, the O vacancies are observed at low temperatures and an ionization energy of 100 meV could be fitted with the help of temperature dependent Hall data, thus indicating the irradiation-induced defects fully recover after the annealing at 600 K, in good agreement with electrical measurements. The Zn vacancies recover in two separate stages, indicating that different defect complexes are involved in their recovery. The O vacancies anneal with the Zn vacancies at the later stage, with an activation energy of E_a = 1.8(1) eV. The negative ions anneal out between the two annealing stages of the vacancies. [1] F. Tuomin, V. Ranki, K. Saarinen, and D. C. Look, Phys. Rev. Lett. 91, 205502 (2003).

8:15 AM EE8.2
Photoluminescence investigations on a native donor in ZnO. Benjamin Stefan Sama, Joachim Lautenschlager and Niklas Volberda; I. Physikalisches Institut, Giessen, Germany.

The shallow donor impurities in ZnO with binding energies between 46 and 56 meV have been studied in great detail in the recent years. They give rise to neutral donor bound exciton recombinations with the A- and B-valence bands, show rotator states and two-electron-satellite transitions. These properties allowed to establish the excited state splittings of the donors as well as confirming Haynes’ rule in ZnO. So far they all seem to be of extrinsic origin, hydrogen, aluminum, gallium and indium in order of increasing binding energy. For many years it was common sense that intrinsic defects would dominate the n-type conductivity of ZnO as well as the behavior of any shallow donors. Recently, however several papers have indicated that certain samples may contain significant concentrations of shallow donors. In this work we present photoluminescence data of high purity ZnO crystals with shallow donor densities of 2x10^{10} cm^{-3} and as revealed by SIMS the common donor impurities (Al, Ga, In) cannot account for the high carrier densities.

8:30 AM EE8.3
Complex Formation in Undoped and Nitrogen Doped Zinc Oxide Grown by MOCVD. N. H. Nickel1, F. Friedrich1, J. F. Rommelmaiera2 and P. Galt1; 1Hahn-Meitner-Institut Berlin, Berlin, Germany; 2CNRS-LPSC, Meudon, France.

Research on zinc oxide (ZnO) is driven by a strong desire for blue and ultraviolet light emitting devices. So far, however, the major shortcoming is the lack of reliable p-type doping. In this work, we present a detailed investigation of undoped and nitrogen doped ZnO layers using vibrational spectroscopy. The specimens were grown in a horizontal commercial MOCVD reactor at atmospheric pressure using diethylzinc and tertiarybutylamine as zinc and oxygen sources. Nitrogen doping was achieved by adding diallylamine and the carrier gas was hydrogen. The ZnO layers had a thickness of 0.8 to 2.2 μm and were characterized using Fourier transform infrared spectroscopy and Raman backscattering. Both, undoped and nitrogen doped ZnO layers revealed broad vibrational modes at 1414 and 1585 cm^{-1}. These lines indicate the presence of carbon sp^2 clusters. In nitrogen doped ZnO the lines are more pronounced than in undoped samples. Furthermore, in N doped ZnO a new local vibrational mode near 2000 cm^{-1} is observed that most likely originates from the formation of N-H complexes. Infrared measurements reveal the presence of cyano radicals (CN) and a large amount of CO₂ molecules. The presence of these defects and clusters suggests that chemical reactions of the metal organic precursors in the gas phase play a critical role for controlling impurity and dopant concentrations. The implications for achieving reliable p-type doping of ZnO will be discussed.

8:45 AM EE8.4
Role of Active Oxygen Species on Growth of ZnO Using RF-PAMBE. S. M. Darabi1, W. C. T. Lee1, M. Allen2, P. Miller2 and J. F. Reesee;1 Electrical Engineering and Computer Science, University of Canterbury, Christchurch, New Zealand; 2Physics, University of Canterbury, Christchurch, New Zealand.

The basic ZnO RF plasma-assisted molecular beam epitaxy (RF-PAMBE) growth technique is essentially identical to what has been successfully implemented for the nitride semiconductor family, and there is every reason to expect differences in moving to a different material system. For example, it is reasonably well-established that
the key species produced efficiently by nitrogen RF plasma sources is N₂⁺, with evidence that atomic nitrogen can have deleterious effects on growth. The above reaction produces a 200-450 °C neutral N exhibits RF power, and with a Ga bilayer riding the surface. In contrast, there is evidence that O⁺ plays the major role in growth of ZnO using the same basic technique, and an improvement is generally seen in film quality for increased RF power. Little, if any, additional growth in the importance or effects of the variety of neutral and ionised oxygen species produced by these plasma sources on properties of ZnO thin films. In this study, a series of ZnO thin films were grown on (001) sapphire substrates at a temperature of 650°C. Prior to nucleation, a ~50 nm buffer layer was grown at 300°C. Active oxygen was supplied using an Oxford MDP21 plasma source with an aperture configuration of 276.2 mm diameter holes. RF power was varied on the range of 60 to 700 W, with a Zn flux of approximately 7 x 10¹⁴ atoms/cm²-s. The plasma discharge was characterised optically through the rear window port of the plasma source using a Jobin Yvon CCD-3000 spectrometer. Films were analysed using in-situ reflection high energy electron diffraction (RHEED), scanning electron microscopy, atomic force microscopy, photoluminescence (excited by 333 nm argon ion laser line) and Hall effect. Regardless of RF power, a sharp 777 nm tripled due to O⁺ as well as a distinct O₂⁺ band at 790 nm were consistently observed. However, the intensity ratio of these features changed markedly as a function of applied power, with proportionally more O⁺ present with increasing power until approximately 300 W, after which it levels off. Depending on the flow rate, this intensity ratio is observed to decrease in some cases for powers above 300 W. Interestingly, an order of magnitude increase in growth rate was observed between films grown at 150 W and those grown at 300 W and beyond, with a nearly 2-fold increase in the O⁺ intensity. In contrast, the intensity of the O₂⁺ band increased only 5-fold over the same RF power range, suggesting that O⁺ plays the major role in growth, although O₂⁺ may still play a secondary role. Film quality is found to improve significantly as a function of RF power, with the film grown at 400 W characterised by a comparatively flat surface, streaker RHEED, and a carrier concentration a full order of magnitude lower than that grown at 150 W. This is consistent with earlier reports of improved growth at higher RF powers, but the relatively small change in both O⁺ and O₂⁺ ratio between 300 W and 400 W suggests a more complex mechanism.

9:00 AM EE8.5 Electrical and Optical Activity of Point Defects in ZnO.
David C. Look 1,2, Gary C. Farlow 1, Sutik Limpljumpong 3, Shangbo Zhang 3 and Kai Nordlund 3; 1Semiconductor Research Center, Wright State University, Dayton, Ohio; 2Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio; 3Physics Department, Wright State University, Dayton, Ohio; 4School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand; 5National Renewal Energy Laboratory, Golden, Colorado; 6Accelerator Laboratory, University of Helsinki, Helsinki, Finland.

The role of point defects in determining the electrical properties of ZnO has been a source of much speculation over the last several decades. For example, as-grown ZnO is nearly always n-type, with Zn-rich stoichiometry, so early researchers almost universally attributed their reported n-type to either the O vacancy V_O or the Zn interstitial Zn_I. This situation prevailed until the year 2000, when Kohan et al. showed that both V_O and Zn_I have high formation energies in n-type ZnO, and thus are not likely to exist in significant quantities. They found that V_O is a deep donor, and so wouldn’t contribute free carriers in any case. Van de Walle then showed theoretically that the H interstitial H_I has a much lower formation energy than that of either V_O or Zn_I. In a different material and thus is a much more likely candidate for the major background donor, especially since H is often present in a typical ZnO growth environment. Several experimental groups have since verified that H is a donor and is often present in as-grown ZnO, and thus this explanation that point defects do not play a significant role as background donors. However, we will show here that a particular point defect, Zn_I, indeed does contribute to n-type conductivity, but as a complex, not as an isolated entity. To reach this conclusion, we have irradiated high quality bulk as-grown ZnO samples with 1-MeV electrons to create Zn_I and V_O defects, and have studied their properties with temperature-dependent Hall-effect and low-temperature photoluminescence (PL) measurements. We have also used molecular dynamics (MD) simulations to calculate the production rate of the Zn_I, and density functional theory (DFT) to calculate the energetics of a particular complex, Zn_I NO. This complex can be formed in our material because of a high N background, and our MD shows that it has a shallow donor character as well as a relatively low formation energy. From the Hall-effect results, we find that the irradiation produces a 30-meV donor, and its concentration is consistent with that of Zn_I as predicted by the MD simulations. From the MD data, we find a new sharp, donor-related exciton (∆D (X)) line at 3.36070 eV, and two-electron satellite (TES) lines at 3.3711, 3.3795, and 3.3840 eV, consistent with a 30-meV hydrogenic-type donor. We suggest that this donor is the Zn-N -O complex and that the defects result in their pre-deposition state, and the new PL lines also largely disappear. Since the as-grown material also clearly contains a 30-meV Hall-effect donor and two of the three TES lines, we suggest that ZnO related donors do exist in the as-grown material. It is clear that previous studies have shown that another defect, the Zn vacancy V_Zn, is a dominant acceptor in as-grown, n-type ZnO. Thus, contrary to present thought, we conclude that native point defects are important both as donors and acceptors in n-type ZnO.

9:30 AM EE8.6 Thermal stability of ion implanted ZnO. Victoria Coleman 1, H. Tan 1, C. Jagadish 1, S. O. Kucheyev 2, J. Zou 3 and M. R. Phillips 1; 1Department of Electronic Materials & Technology, National University of Singapore, Singapore, Singapore; 2Lawrence Livermore National Laboratory, Livermore, California; 3School of Engineering and centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland, Australia.

With a large exciton binding energy and wide band gap, ZnO is a very attractive material for a range of (opto)electronic devices including blue light-emitting diodes and laser diodes. However, before ZnO devices containing p-n junctions can be realized, the challenge of reliably and reproducibly achieving p-type doping in this material must be overcome. Ion implantation is widely used in the microelectronics industry for selective area doping, device isolation and quantum well intermixing. A thorough understanding of damage accumulation, recrystallization processes and thermal stability is important for achieving all of these aims. In this study, the thermal stability of ZnO implanted with very high dose (1.4 X 10¹⁹ cm⁻²) 300 keV lithium ions (potential p-type dopant) in the range 77 K – 500 K is investigated. Post implant annealing of samples in the range of 1000 – 1200 °C was employed to recover the crystallinity of the heavily damaged layers. Rutherford backscattering/channeling spectrometry, transmission electron microscopy and atomic force microscopy revealed that heavily damaged ZnO is not thermally stable and evaporates at high temperatures, whilst the undamaged ZnO remains unaffected. An optimum set of conditions for achieving recrystallization and dopant activation, with the addition of low oxygen incorporation, has thus been derived and applied to both N⁺ and P⁺ implants into ZnO for p-type doping, as well intermixing studies of ZnO/ZnMgO quantum well samples. The results of these study have significant implications for ZnO-based devices, particularly the creation of p-type material by ion implantation. Work at LLNL was performed under the auspices of the U.S. DOE by University of California, LLNL under Contract W-7405-Eng-48.

9:45 AM EE8.7 UV photocconductors based on Ga-doped ZnO films.
Leelapaninsa J. Manchapan, Faxian Xin, Zheng Yang and Jianlin Liu; Department of Electrical Engineering, University of California, Riverside, Riverside, California.

ZnO is a wide bandgap (3.37 eV) semiconductor that is being explored widely in recent years for UV detection as photodetectors and LED devices because of its attractive and promising properties. Attempts are being continuously made to grow high quality ZnO films and fabricate various kinds of ZnO based photocconductors such as photodetectors, hetero-junction and homojunction photodiodes, thin film transistors, surface acoustic waveguide photodetectors, etc. Reproducible p-type doping remains challenging to obtain reliable high performance from some of these devices. In our study, we report the successful fabrication of high quality photocconductors based on Ga-doped n-type ZnO. The ZnO films were grown by molecular beam epitaxy on R-plane Sapphire substrates. Material characterizations such as photoluminescence (PL), X-ray diffraction (XRD), Rutherford backscattering (RHEED) and Hall measurements were carried out, which indicated a single crystal ZnO film growth on Sapphire with an orientation of (1120). Hall measurement results showed n-type ZnO films with a carrier concentration of the order of 10¹⁸ cm⁻³ and low resistivity of 0.07 Ω-cm to 0.19 Ω-cm. Device fabrication was done by standard photolithography techniques. A set of samples was fabricated by defining mesa of area 250 μm x 250 μm and 500 μm x 500 μm and another by directly depositing Al (400nm)/Ti (20nm) ohmic contacts were made by e-beam evaporation and lift off. Wet chemical etching was employed to define mesas. Linear characteristics were obtained from Current-Voltage (I-V) measurements that also showed responsivity to UV illumination. Voltage dependent photocurrent characterization was carried out after packaging the devices. The detection restricted to UV region was observed. The response extended from UVA (400-530 nm) to UBV (320-290 nm) region and partially into UVC (290-290 nm) region with
a peak position in the UVA region. Responsivites and quantum efficiencies were also estimated.

10:30 AM EFE8.8
Stabilization of mixed valencies in Cu, Zn-based oxides.
Anne Le Nestour1,2, Manuel Gaudon1, Mona Treguer-Delapierre1, Ronan Morvan-Denise1, Françoise MCB-CNRS, Pessac Cedex, France; 3 AGFA-Gevaert, Mortsel, Belgium.

Cu and Zn-based oxides have been developed for the last decades because of their optical and electronic properties and their relevant UV-Visible-NIR absorption properties. Cu in oxides can adopt various oxidation states (+1, +II, +III) stabilized in various environments (Dox, Td, D4h, C4v, D2h, Oh). Divalent copper cations can occupy Td or Oh sites in zinc aluminate spinel network. Solid state routes lead to homogeneous phases with Zn1-xCu2Al2O4 compositions. Depending on the inversion rate in the spinel matrix, various absorption bands have been identified in the UV-Visible-NIR spectrum. The analysis of the zinc-aluminate spinel solid solution Zn1-xCu2Al2O4 by an esterification route led to monocryalline nanosized oxides. Two intense absorption bands at 300 and 500 nm can be attributed to charge transfer phenomena between oxygen and Cu2+ cations in tetrahedral and octahedral coordinations. Two other less intense absorption bands centred at 800 nm and 1500 nm are also appearing when the copper rate in the spinel increases but their relative intensity are not in good agreement with those observed in the case of the solid-state synthesis. In the case of the esterification route, the absorption band at 800 nm is much more intense than in the case of the solid-state synthesis. It can be explained either by a deviation to the centrosymmetric character of octahedral sites or by the occurrence to the non-invertible zinc-aluminate spinel solid solutions which give electronic transitions in this energy range. A magnetic study correlated to EPR measurements confirms the occurrence of a mixed valence state for copper cations in the solid solution Zn1-xCu2Al2O4. The EPR spectra show that small concentration of Cu2+ (x<0.10) a strong anisotropic signal due to the presence of Cu2+ ions in a distorted octahedral symmetry (gxx=2.07, gzz=2.15 g=2.23). Moreover the hyperfine structure, identified on EPR spectra, depends on the magnetic field as spins are affected under air because the parameteric centers Cu2+ (3d9) as well as their interactions become significant. Furthermore, the color changes drastically with the Cu+ (3d10) content. Finally the structural features and the UV-Visible-NIR absorption properties of copper-zinc aluminates will be discussed and compared to Cu-doped ZnO.

10:45 AM EFE8.9
Acceptor related Luminescence in ZnO. Frank Bertram1, Juergen Christen1, Soeren Giemisch1, Thomas Hempel1, Silke Petzold1, Armin Daid1, Alois Krost1, Axel Hoffmann2 and Markus Wagner3; 1Institute of Experimental Physics, Magdeburg University, Magdeburg, Germany; 2Institute of Solid State Physics, Technical University Berlin, Berlin, Germany.

Despite many years of extensive studies, some of the essential properties of the luminescence in ZnO are still not fully understood. One of the possible open issues is the acceptor related luminescence in ZnO. We present a comprehensive analysis of the optical properties of a nominally undoped, i.e. n-conducting ZnO epitaxial layer by means of temperature dependent photoluminescence (PL) and cathodoluminescence (CL) microscopy. The ZnO epi-layer under study was grown by metal organic chemical vapor phase epitaxy on a GaN/sapphire substrate using a 0.3mm thick ZnO buffer deposited at 450°C and in situ annealed at 900°C inside the reactor. The final nominally 5um thick ZnO layer was subsequently grown at 900°C. The spatially averaged luminescence spectrum is dominated by the impurity bound exciton I8. The free exciton AX, the bound excitons I10, I2, I6, and I8, as well as LO phonon replica of I8 can be clearly resolved at low temperatures. Additionally the two electron satellites (TES) of I8 and I9 are also visible in the near band gap region. All lines are 0.7meV red shifted with respect to their fully relaxed position known from bulk crystals indicating minor tensile strain. At 4K the TES I8 and I9 lines are well separated and easy to identify. At elevated temperatures (T=70K) a new broad peak shows up precisely at the spectral position of these TES peaks E=3.306eV. This line exhibits a pronounced high energy Boltzman tail and up to 5 LO phonon replica at the low energy side. With increasing temperature this line together with its LO replica become dominant. Due to the temperature dependence of intensity and spectral shift we assign this line to a bound transition. To determine an acceptor binding energy of EA=130meV from the energetic position of this transition. Highly spatially resolved CL mappings visualize surface defects (hexagonal crystals) as the localized origin of this transition. For a verification of our assignment we took temperature dependent CL spectra from the same identical two sample positions: from a spot in the matrix and from a specific crater. With increasing temperatures the (eA) transition relatively increases in intensity at both positions, however, it gains significantly more at the defect region. Even more (eA) dominates at the local spectrum from the defect spot for T>150K, while I8 is still dominant at the matrix spot and the integral spectrum. This strongly suggests an acceptor accumulation in the vicinity of the morphological defects. The nature of the exciton binding centers is determined using magnetooptics in emission and absorption. Thermalization data provides information of the exciton recombination lifetime or acceptor related. The angular dependent Zeeman splitting gives further evidence for the interpretation of the bound exciton transitions.

11:00 AM EFE8.10
Hydrothermal ZnMgO bulk crystals. Michael J. Callahan1, Buguo Wang2, Lionel Bouthillette1, Michael Suscavage1 and Sheng-Qi Wang2; 1SNHC, Air Force Research Lab, Hanscom AFB, Massachusetts, 2Solid State Scientific Corporation, Nashua, New Hampshire.

The ZnMgCdO alloy system has certain advantages over the AlGaN system such as: higher exciton binding energies; ability to grow direct bandgap alloys from green-UV with a smaller change in lattice constants; lower growth temperatures; and faster etch rates. Despite these advantages efficient ZnO based LEDs and laser diodes have not been demonstrated because of the inability to obtain p-doped ZnO thin films reliably at high concentrations. One possible reason for the difficulties in p-doping ZnO could be because of self compensating doping mechanisms due to defects, a phenomenon seen in other II-VI materials. Therefore unlike GaN based devices, efficient long lifetime ZnO based LEDs and laser diodes may require low defect density homogeneous substrates. Recently we have been able to grow I-3 mm3 ZnMgO single crystals and several mm thick films on ZnO substrates with uniform composition by the hydrothermal method. Up to five percent magnesium was incorporated into the ZnO lattice with a corresponding shift of up to 80 meV in the near band edge photoluminescence. Photoluminescence from samples from the same experiment showed uniform magnesium incorporation with only a -1 2 percent deviation in magnesium concentration. Details of growth conditions and characterization of the samples will be discussed. These initial results show the potential of using the hydrothermal technique to grow ZnMgO alloys, and other ZnO based alloys to produce substrates with compositional uniformity for lattice matched transparent substrates and bandgap engineering.

11:15 AM EFE8.11
ZnO-based p-n junctions with p-type Zno by ZnTe oxidation. Efilana Kamiska1,2, Ewa Przędziecka2, Anna Plotrowska2, Zbigniew Koszt1, Pawel Jagodzinski1, Krystyna Golaszevska1, Elżbieta Dynowska2, Witold Dobrowolski2, Łukasz Klopotowski2, Elżbieta Lubaszewska2 and Anna Wojcik-Jedlińska1; 1Institute of Electron Technology, Warsaw, Poland; 2Institute of Physics PAS, Warsaw, Poland; 3Institute of Physics, PAS, and EIRATO Semiconductor Spintronics, Warsaw, Poland.

The feasibility of p-type conductive ZnO has generated an enormous amount of interest over the past few years. Although improved, the acceptor doping of ZnO still remains an active area of research and development. In this communication we discuss preparation of p-type ZnO by oxidation of nitrogen-doped p-type zinc telluride and report on fabrication of ZnO p-n homojunctions. The starting ZnTe material was grown by MBE, in hydrogen-free atmosphere, either on GaAs or on bulk ZnTe. For oxidation, samples were furnace annealed in O2 flow at 600°C. N-type ZnO was deposited by rf magnetron sputtering from ZnO target. Secondary ion mass spectrometry, x-ray diffraction and atomic force microscopy were used to examine the composition, microstructure and surface morphology of ZnO films. The transport properties of p- and n-type ZnO layers were assessed from Hall effect measurements. Photoluminescence spectra were measured with the excitation of 325nm line of He-Cd laser. Electrical characteristics of p-n junctions were obtained by conventional I-V measurements. The microstructure of p-type ZnO films was polycrystalline with inclusions of metallic Te, most probably due to the fact that sublimation of tellurium is inhibited in the course of the oxidation. The thickness of p- and n-type regions was 0.6 - 1.0 μm. Free carrier concentrations in p- and n-type ZnO were 0.1-1x1018 cm–3 and about 1x1019 cm–3, respectively. Through optimizing various critical fabrication steps, including development of ohmic contacts to p-type and to n-type ZnO and controlled chemical etching of ZnO, we achieved high quality rectifying p-n junctions. Part of the research was supported by grants from the European Commission NANOPHOS IST-2001-39112 within the 5th Framework Program and from the State Committee for Scientific Research PBZ-KBN-044/P03/2001. J. Koszt and E. Przędziecka acknowledge the support from Foundation from Polish Science.

11:30 AM EFE8.12
p-Type Nitrogen-Doped ZnO Thin Films Fabricated by
Pulsed Laser Ablation. Arnold Almenic, Zhendong Hu, Yong Che, Bing Liu, Wei Guo and Xiaoming Pan. 1 Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan.

ZnO thin films were fabricated on (0001) sapphire substrates by pulsed laser ablation using Zn-ZnO targets. X-ray diffraction and cross-sectional transmission electron microscopy studies confirm the formation of epitaxial ZnO films. The nitrogen concentration determined by nuclear reaction analysis is in the range of 10^18/cm^3 and have a small mobility possibly due to the presence of electrically active nitrogen-related defects. Long anneals in nitrogen result in semi-insulating and photoductive ZnO. Rapid thermal annealing of the films results in n-type conductivity. Hall-measurements give an average resistivity of 800 Ω·cm, a mobility of 0.32 cm^2/V·s, and a hole concentration of 2.3 ×10^{16} cm^3. The influence of Zn-rich growth conditions will be discussed. The dependence of the resistivity on the annealing temperature suggests that nitrogen acceptors are activated due to the dissociation of ZnNH complexes.

11:45 AM EE9.12
Epitaxially Grown Pulsed Laser Deposited Mg, Zn1-x-O (0<x<1) Thin Films and Excitonic and Radiative - Non Radiative Recombination Kinetics. Shiva S. Hallavarad, S. Dhake, I. Takuchii, T. Venkataraman, John Foreman, Henry Everett, 1 Center for Solar Energy Research, University of Maryland, College Park, Maryland; 2 Department of Physics, Duke University, Durham, North Carolina; 3Bluwave Semiconductors, Columbia, Maryland; 4Army Research Office, RTP, North Carolina.

ZnO and Mg2Zn1-xO have been subjects of intense scientific research as wide-bandgap optoelectronic materials. Their excellent material properties are promising for blue and UV photon emitters and detectors. ZnO and Mg2Zn1-xO also possess unique figures of merit, such as higher band gap energy tunable from 3.2 to 7.8 eV, and free-exciton binding energy of 60 meV (much larger than that of GaN~26 meV) along with its larger absorption coefficient compared to GaN make ZnO and its alloys - the potential candidates for optoelectronic applications, such as blue and ultraviolet (UV) light emitters and UV detectors. The large exciton binding energy ensures that excitonic emission is prominent at room temperature. In this work we present results on the optical characterization of Pulsed Laser Deposited epitaxially grown thin films of ZnO and Mg2Zn1-xO on sapphire. The crystalline quality and composition of alloys are characterized by X-Ray Diffraction and Rutherford Back Scattering (RBS) - ion channeling techniques respectively. The composition of the films is found to have strong dependence on the growth parameters. The photo generated carrier decay times are analyzed by time resolved photoluminescence (TRPL) measurements. Since most optical and electrical devices are operated at room temperature, understanding the fundamental excess carrier recombination dynamics at 300 K is required to evaluate the relevant radiative and non-radiative recombination mechanisms in order to improve the performance of devices. We have observed from initial TRPL measurements evidence of competing non-radiative relaxation processes and radiative recombination as a function of Mg concentration in the Mg2Zn1-xO samples. Particularly noteworthy is the observation of an extremely strong excitonic feature in the Mg2Zn1-xO (x<0.13) sample, whose decay characteristic was investigated with TRPL. Conclusions about the correlation between material quality and radiative recombination efficiency, obtained by comparing RBS and PL-TRPL measurements, will be discussed.

SESSION EE9/FF18: Joint Session: Zinc Oxide Materials and Devices Including Alloys II Chair: David Look and Adam Saxler
Wednesday Afternoon, November 30, 2005
Grand Ballroom (Sheraton)

1:30 PM EE9.1/FF18.1

Invited Talk. In this presentation properties of hybrid ZnO/GaN and all-ZnO based heterostructures based on the results of modeling are presented. Novel band-gap engineering of type-II and type-I band heterostructures incorporating the strong piezoelectric and spontaneous polarization fields in ZnMgO and AlGaN-based materials was investigated. Band structures of various MgZnO/AlGaN/GaN heterojunctions were simulated, revealing a strong hole confinement near n-ZnO/p-AlGaN interface with a hole sheet density up to 1.8×10^{13} cm^{-2}. The formation of hole accumulation layer and triangular well near the hybrid heterointerface can increase the probability of radiative recombination. There have been implemented and simulated results for electrical and optical emission characteristics of hybrid n-ZnO/p-AlGaN heterostructures with specific emphasis on creating efficient LEDs are presented. Crystallographic, optical, and electrical properties confirmed that high quality MgZnO/ZnO layers grown epitaxially on both GaN/Sapphire templates and ZnO substrates using RF-plasma enhanced MBE. A summary of the characterization results of CdxZn1-xO layers with Cd mole fraction up to 0.18.8 including high resolution X-ray diffraction (XRD), RBS, optical transmission, photoluminescence, and cathodoluminescence mapping is presented. Dependence of the fundamental optical band gap on the composition of CdxZn1-xO alloys is reported. Band gap bowing and the possible effect of composition micro-fluctuation in ternary CdxZn1-xO alloys on the optical band gap is also discussed. Strong optical emission observed at RT throughout the visible spectrum from CdxZn1-xO layers with various compositions demonstrates a great potential for use as light emitter. Finally we present results of demonstration of UV-blue ZnO-based LEDs.

2:00 PM EE9.2/FF18.2
New Wide Band Gap Alloy BeZnO Growth. Yungyeol Ryu, Joseph A. Lubigaba, A. B. Cormack, Henry W. White, J. H. Leem, M. S. Han, Y. J. Youn and W. J. Kim; 1MOXtremics, Inc, Columbia, Missouri; 2Physics Department, University of Missouri, Columbia, Missouri; 3MOxtronics, Gwangju, South Korea; 4Semiconductor Physics Research Center, Jeonbuk National University, Jeonju, South Korea.

We have synthesized a new wide band gap oxide alloy, BeZnO. The BeZnO films have been deposited on sapphire substrates by our hybrid beam deposition growth method. The value of energy band gap of BeZnO can efficiently be tunable from the ZnO band gap (3.3 eV) to that of BeO (1.06 eV). BeZnO can be used for fabricating films and heterostructures of ZnO-based electronic and photonic devices and for other applications. The properties of BeZnO will be presented in this talk.

2:15 PM EE9.3/FF18.3
Optically Tunable MgZnO Nanocrystallites and their Structural Properties. John L. Morrison, Xiang-Bai Chen, Jesse Huso, Heather Hookc, James Mitchell, Dario A. Macheleidt, Leah Bergemann and Tsvetanka Zvezdova; 1Physics Department, University of Idaho, Moscow, Idaho; 2Army Research Lab, Adelphi, Maryland.

ZnO and MgZnO are promising emerging materials capable of luminescence in the ultra violet (UV) spectral range. ZnO exhibits hexagonal wurtzite crystal structure and has a bandgap of 3.37 eV while MgO has the rock-salt cubic structure and a bandgap of 7.5 eV. Thus the MgZnO alloy system may provide a new optically tunable family of wide bandgap materials usable in UV luminescent applications as well as a potential conjugate material in AlGaN-MgZnO hybrid devices. MgZnO nanocrystallites with an average size of ~30 nm were synthesized via thermal decomposition. Samples having Mg concentrations of 0%, 7%, 13%, 26% were studied via photoluminescence, resonant-Raman scattering, TEM, XRD, and XPS. The TEM and XRD studies indicated that at these concentrations the nanocrystallites still retain the hexagonal Wurtzite structure. The nanocrystallites found to exhibit room-temperature UV- photoluminescence for which the peak position depends on the Mg concentration: a blueshift of ~0.3 eV was achieved as the Mg concentration increased from 0% to 7%. A defect related blueshift is somewhat smaller than that reported for MgZnO thin films with a similar Mg concentration; this could be attributed to the nanocrystallites' surface defects, which result from the large surface to volume ratio inherent to crystals at the nano-scale. Our room-temperature studies of the first and second order of the nanocrystals exhibited a shift of up to 30 wavenumbers as the Mg concentration increased from 0 to 26%; this result is consistent with those reported for the E1(LO) mode in Mg0.15Zn0.85O thin films. A blue shift of ~100 meV at room temperature response of the Mg0.2Zn0.8O nanocrystallites over a range of 77-900 K will be presented and issues such as anharmonic interaction, photoluminescence thermal shift, and crystalline stability at these temperatures will be discussed. Leah Bergemann gratefully acknowledges NSF CAREER DMR-0238845 and DOE-DE-FG02-04ER46412, as well as...
as the American Chemical Society PRF 40749-AC10.

3:30 PM EE04.9/FF18.4
Piezoelectric characterization and stimulated emissions of ZnO pillars within hexagonal arrays. Robert Hauschild1, Hongjin Fan2, Woo Lee3, Marin Alexe4, Armin Dadgar5, Alois Krost1, Kornelius Nielsch1, Margit Zacharias1 and Heinz Kalt1. 1Institut of Applied Physics, University of Karlsruhe, Karlsruhe, Germany; 2Max Planck Institute of Microstructure Physics, Halle, Germany; 3Institute of Experimental Physics, Otto-von-Guericke University, Magdeburg, Germany.

ZnO pillars with diameter in the submicron range promise lower threshold laser action due to a higher Q-factor of the resonator and a larger overlap of the guide modes with the gain medium. We applied a template-assisted approach to spatially separate and hexagonally-arranged ZnO pillars which are typically 300 nm in diameter and 1.5 μm in height. The piezoelectric properties of single pillars are characterized using piezoresponse force microscopy (PFM). The obtained piezoelectric coefficient d33 is (7.5±0.6) pm/V, which is to our knowledge, the first reported value for a single pillar. This value is much smaller than the reported value of ZnO nanobelts but comparable to that of bulk ZnO. The bulk like piezoelectric behavior indicates that the pillars have low density of structural defects. The optical properties are studied using micro-photoluminescence (PL) spectroscopy which allows both cw and time-resolved measurements. The luminescence of the sample is bright up to room temperature, uniform and stable. The pillared layers show intense excitation and phonon replica at temperatures above 100 K. The formation of phonon replica peaks in the PL spectrum together with the low defect-related emission and the bulk like decay time of 200 ps represents the high quality of the ZnO pillars. With increasing the pump power, a new sharp peak due to exciton-exciton scattering emerges accompanied by an evident threshold behavior, which is a sign of stimulated emissions of the pillars. The stimulated emission from a single ZnO pillar will be presented in detail. Based on the PFM and micro-PL results, the quality of our ZnO pillars meets the requirement for their potential applications like actuators and optoelectronic switch.

3:45 PM EE05.9/FF18.5

Atomic layer deposition is a versatile growth technique that allows surface-controlled, layer-by-layer deposition of highly conformal films on substrates with complex geometries. We have fabricated ZnO inverse opals by infiltrating carboxylate-modified polyethylene opal templates using atomic layer deposition process. The resulting structures have high filling fractions, possess both first- and higher-order photonic band gaps in the near-UV to visible spectrum, and exhibit efficient photoluminescence. ZnO acts as both the dielectric and active material in these optically active three-dimensional photonic crystals, and we can utilize the photonic band structure to modify the emission properties. We have observed suppression and redistribution of the spontaneous emission due to both first-order and higher-order band gaps. We also report mirrorless, tunable, and highly directional photonic crystal lasing in the near-UV spectrum when the band gaps overlap the gain spectrum of ZnO. We correlate our experimental results to calculated band structure, taking into account the frequency-dependent dielectric function of ZnO near the absorption edge.

4:00 PM EE06.9/FF18.6
Low-Temperature Plasma-Assisted MOCVD Growth of ZnO. Maria Lossurdi1, Pio Capezzuto2, Giovanni Bruno3, Graziella Malandrino3, Manuela Blandino4 and Ignazio Fraga5. 1Chemistry, IMP-CNR, Bari, Italy; 2Chemistry, University of Bari, Bari, Italy; 3Chemistry, University of Catania, Catania, Italy.

ZnO is a wide band gap (Eg = 3.37 eV) semiconductor material that recently has attracted much interest due to its high photocatalytic activity, and its potential applications in optoelectronic devices, such as short-wavelength, blue-light emitting devices. Its strong excitonic feature and lasing properties even at room temperature. ZnO nanosstructures have also numerous applications in such diverse areas as piezoelectric transducers, phosphors, sensors and transparent conducting films. In the past decade, research has focused on the growth of ZnO thin films by techniques such as sputtering, spray pyrolysis, sol-gel, electron-beam deposition. However, the importance of MOCVD for the growth of ZnO should be reconsidered, as this technique has used the commercial application of GaN and related materials. Therefore, we present and discuss the growth process and structural and optical properties of ZnO thin films and nanostructures grown by MOCVD plasma-assisted (PA-MOCVD) using oxygen plasma excited by 13.56MHz rf-power. A new precursor Zn(TTA)2-tmed (HTTA=2-thiophenylthioethanolatomo, TMED=N,N,N,N-tetramethylethylenediamine) is used. Different substrates, including Si(100), 4H-SiC(0001) and 6H-SiC(0001) are used for nanostructured films, since their different surface tension is used for different ZnO nanoparticles size and distribution. These substrates are also treated in the presence of various plasma gas (H2, Ar) used for ZnO nanoparticles nucleation and investigate their impact on material properties. The impact of substrate temperature ranging from 300C to 600C and of plasma parameters (r.f. power, O2 partial pressure and N2 addition) on ZnO thin films is presented for both PA-MOCVD and CVD technologies. In situ real time monitoring of the growth process is carried out using laser reflectance interferometry (LRI), X-ray diffraction (XRD) is used for investigation of deposition parameters on film structure. The surface morphologies of ZnO nanoparticles determined by atomic force microscopy (AFM). The electrical properties are studied using the 4-probe Hall measurements and electrical force microscopy. Spectroscopic ellipsometric (SE) spectra of the dielectric function acquired from 0.75 to 0.9 eV are used for investigating the optical properties (exciton of ZnO appears in dielectric function) as a function of film structure. Optical properties are also investigated by photoluminescence to establish correlation between film structure and optical efficiency. XRD measurement showed that the quality of ZnO film grown at lower temperature around 300°C with optimized RF power is better than that of the film grown at higher temperature due to a larger internal mismatch between ZnO and the substrate. The obtained data show plasma-assisted MOCVD is useful for ZnO growth of thin films and nanostructure at low temperature, being a key process for deposition of high quality ZnO films on various substrates.

4:15 PM EE07.9/FF18.7
Metal Organic Chemical Vapor Deposition of Zinc Oxide. William E. Fenwick1, Ming Pan2, Julie-O Song3, Nola Li4, Shalini Gupta4, Hun Kang5, Ali Ashgar6, Martin Strassburg6, Nikolas Dietz6 and Ian T. Ferguson7. 1Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia; 2Cernet Inc., Atlanta, Georgia; 3Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia; 4School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia.

Zinc oxide (ZnO) is a material that shows great promise in optoelectronic applications because of its high exciton binding energy of ~60meV. Its bandgap of ~3.37eV potentially makes it an important material in the field of UV light emitters and detectors. However, such devices require that high quality undoped, n-type, and p-type ZnO films be grown. In this work, undoped ZnO thin films have been deposited on c-plane sapphire substrates and their structural, electrical, and optical properties have been investigated as part of a comprehensive study of the factors affecting ZnO thin film growth by metal organic chemical vapor deposition (MOCVD). A high-precision vertical injection reactor allows for precise control of the thin film growth, using diethyl zinc (DEZn) and various oxygen precursors. Growth temperature was varied from 300°C to 680°C, and growth pressures ranging from 10 Torr to 60 Torr were investigated. Deposition rate was varied from 600rpm to 1200rpm. V/I ratios ranging from 56 to 900 were also investigated, as were different precursor flow rate flows. Optimal ZnO growth conditions were determined by a systematic variation of the growth parameters mentioned above in order to obtain reproducible, high-quality undoped, n-type, and p-type ZnO. At a growth temperature of 500°C and a pressure of 50 Torr, the as-grown films show a growth rate of around 1μm/hr. Crystal quality was investigated using XRD, which showed asymmetrical ZnO peaks in omega-theta, suggesting the formation of second phases or incorporation of excess Zn into the crystal. Preliminary investigations suggest that annealing the as-grown ZnO films at high temperatures increases the crystal quality as observed using X-ray diffraction (XRD). As-grown ZnO films were investigated using Atomic Force Microscopy (AFM). AFM revealed a surface roughness of between 18A and 40A for the as-grown films. Hall measurements of the as-grown films were performed as n-type with carrier concentrations on the order of 10^16 -10^17cm^-3, most likely due to point defects. Photoluminescence (PL) was used to investigate the optical properties of the ZnO films. Room temperature PL data revealed a prominent near bandgap emission at 375nm. Furthermore, a broad luminescence band at 400-500 nm and a luminescence band peaking at 504nm has also been observed. A more detailed study of these bands is provided by time-resolved PL investigations. The binding energy and the nature of the dopants and defect centers will be determined and used to identify the nature of the sub-bandgap states. The doping incorporation and carrier concentration will be studied by Raman spectroscopy. The crystal quality of the thin films, and the presence of vibrational modes due to dopants/point defects will be derived by
Zinc oxide and related oxide semiconductor alloys are emerging as important materials for active electronic and optoelectronic devices due to their desirable growth parameters, availability of native ZnO substrates, excellent optical properties, and near-lattice-matched alloy systems. High quality ZnO materials have been achieved using molecular beam epitaxy (MBE) with a plasma source to provide atomic oxygen. However, many challenges remain with respect to the repeatable growth of high quality material, and the ability to achieve reliable p-type doping. In this work, the growth of ZnO on c-plane sapphire by plasma-assisted molecular beam epitaxy will be presented. Sapphire surfaces play a crucial role in determining the quality of epilayer growth and the crystalline quality of the wurtzitic structure, drawing parallels to GaN growth on sapphire. The oxygen environment for ZnO growth presents specific challenges for the MBE growth technique, where oxygen resistive filament components and effusion cells resist oxidation at the source aperture are required. However, the oxygen environment relaxes the requirements on vacuum purity required for MBE growth. Our experience with the unique aspects of ZnO growth over the course of more than 100 growths will be discussed. The crystalline, electronic, and optical properties of ZnO/Al2O3 will be presented and related to nucleation and grain size of the diffused measurements indicate epitaxial growth of the materials with rocking curve full width at half maximum ranging from 100 arcsec to more than 3600 arcsec. Electronic properties are found to generally correlate with x-ray diffraction measurements of structural quality showing carrier concentration and electron mobility in the range of 10^{12}-10^{18} cm^{-2} and 50 cm^{2}/Vs, respectively. In situ doping studies of ZnO using group V elements of nitrogen and arsenic will be presented in the goal of achieving reliable p-type ZnO. The electronic properties of nitrogen and arsenic doped ZnO will be presented. p-type behavior was observed on selected samples, where numerous samples showed n-type behavior despite large dopant concentrations. Challenges associated with the achievement of stable p-type behavior will be discussed.

SESSION EE10: Poster Session: Progress in Semiconductors: Materials and Devices, Nitride Devices, and III/V Electronics

EE10.1 Growth of a-plane ZnO on r-plane sapphire by plasma-assisted MBE

1SVT Associates, Eden Prairie, Minnesota
2Materials Science and Engineering, University of Florida, Gainesville, Florida
3Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina
4Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota.

ZnO is a promising candidate for optoelectronic applications, such as UV/blue light emitting diodes and UV laser diodes. When grown on c-plane sapphire, analogous to III-nitride, the total polarization of ZnO is aligned along the [0001] growth direction and the polarization-induced fields may cause reduction in oscillator strength and a redshift of optical transitions in ZnO-based quantum wells. One way to eliminate the out-of-plane polarization effects is to grow the structures along non-polar directions, e.g., grow on r-plane sapphire. In this study, we report the epitaxial growth of ZnO on r-plane sapphire by RF-plasma-assisted molecular beam epitaxy. X-ray diffraction studies indicate that the epitaxial relationship between ZnO and r-plane sapphire is (11-20)_{r}(0001)_{ZnO} parallel to [1110-0001]_{sapphire}. Atomic force microscopy measurements reveal islands extended along [1110] direction of sapphire. The surface morphology might be correlated with surface terminated dislocations. X-ray omega rocking curves for the ZnO (11-20) reflection measured either parallel or perpendicular to the island direction suggest the dislocation density anisotropy along these directions. However, transmission electron microscopy measurements show little evidence for the presence of a significant density of misfit dislocations between the ZnO and the sapphire, which is quite different from previous reports. Ordinary and extraordinary indices of refraction of the a-plane ZnO films were measured using a prism coupling waveguide technique. The dispersion of the phase-velocity (TE) and transverse magnetic (TM) refractive indices was studied systematically for a-plane ZnO grown on r-plane sapphire in the visible region. The refractive indices change periodically with an azimuthal angle with respect to the c-axis of the a-plane ZnO film for TE mode wave at wavelength of 532 nm while the refractive index of TM mode wave is a constant. This research was supported by Army contract W911NF-05-C-0024 monitored by M. Gerhold. The authors also acknowledge partial support from AFOSR contracts FA9550-04-1-0010 and FA9550-04-C-0051, monitored by T. Steiner.

EE10.2 Non magnetic doping effect on the magneto-transport properties of Mn doped ZnO Dilute Magnetic Semiconductors

Gowind Mandyala, Sridharan Manchiraju, B. Robertson, T. Kehl, Kannal Paul and K. Ghosh, Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri.

Dilute Magnetic Semiconductors (DMS) are a rare group of promising materials that utilize both electronic charge, a characteristic of semiconductor materials, and electronic spin, a characteristic of magnetic materials. This combination of charge and spin degrees of freedom in a single substance leads to a unique interplay of magnetic, optical, and electronic functionalities. Recently, DMS have received much attention due to their potential use in novel spintronic devices and quantum bits. Oxide-based DMS show promise of ferromagnetism at room temperature. ZnO (ZnO), a short wavelength transparent opto-electronic material, is an interesting prospect for spintronics due to its unique magnetic, electrical, and optical properties. ZnO doped with a transition metal like manganese and non-magnetic metals (Al,Cu) is a DMS which has strong exchange interaction between localized d electrons and sp band carriers. In this work, high quality thin films were deposited epitaxially on c-plane sapphire single crystals. Al and Cu doped ZnO films were prepared using pulsed laser deposition (PLD) technique at 900°C in 6x10-2 Torr of oxygen. The effect of non magnetic doping on the structural and electro-magnetic properties of these films was studied using X-ray Diffraction, Raman Spectroscopy, Atomic Force Microscopy, Scanning Electron Microscopy, and Magnetic Transport. Magnetic transport confirms the epitaxial growth with a strong orientation along the c-axis, while Scanning Electron Microscopy reveals a single phase structure. Atomic Force Microscopy gives the RMS surface roughness.
of the order of 1 to 2 nm over 5x5 μm². Raman spectrum confirms the Wurtzite structure of ZnO_{0.85}Mn_{0.15}O. Magneto transport quantifies the Curie temperature and mobilities for ZnO_{0.85}Mn_{0.15}O and Al and Cu doped (ZnO_{0.85}Al_{0.15}O) and (ZnO_{0.85}Cu_{0.15}O) (A=Al and Cu) at room temperature. Carrier concentration for ZnO_{0.85}Mn_{0.15}O is 8.96×10⁹ cm⁻³, whereas for Al and Cu doped ZnO is increased to 3.95×10¹⁰ and 4.07×10¹⁰ respectively. Mobility for ZnO_{0.85}Mn_{0.15}O is 30.97 m²/V·s, whereas for Al and Cu doped ZnO is decreased to 3.18×10⁸ and 2.55×10⁸ respectively. Detailed and interesting results were obtained from these studies would be shown in the presentation. This work is supported by the National Science Foundation (award number DMR-0231178) and Research Corporation (award number CG0166).

EE10.3 Lowering of stimulated emission threshold of ZnO by electron doping. Yu-Guang Wang, Naoki Iwashita, Takamasa Ishigaki, Yoshihiko Wada, Isao Salaguchi and Hajime Haneda; Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.

Owing to its large exciton binding energy, zinc oxide (ZnO) is known to be a potential material for light emitting devices, such as LEDs. For these applications, light emitting efficiency is absolutely important and, in particular, lowering of its stimulated emission threshold is essential issue for lasing application of ZnO. In the present study, we investigated the effect of doping on the stimulated emission behavior of ZnO. We investigated two types of doped ZnO, i.e., hydrogen doped and aluminum doped ZnO. The samples were ZnO thin films grown on sapphire substrate with or without laser deposition. Thickness of the films were 50-70 nm. For hydrogen doping, hydrogen plasma irradiation was applied. We used inductively coupled plasma. The estimated hydrogen concentration in the films were in the order of 10¹⁸ cm⁻³. The excitation condition used was employed for Al-doping. The undoped ZnO films deposited on sapphire substrate was fired to enhance diffusion of Al in sapphire into ZnO films. Excitation intensity dependency of photoluminescence spectra revealed that excitation threshold for stimulated emission (P-band) reduced by these impurities. For hydrogen case, the threshold for optically pumped stimulated emission of doped film was about 1/10 of that of the original film. For aluminum case, 1/5 was achieved. Comparing both cases, hydrogen doping was found to reduce the threshold for stimulated emission behavior. For hydrogen, it was observed that high temperature enhanced the stimulated emission behavior. For aluminum doping, the threshold for stimulated emission was reduced. The near field PL intensity in both cases were measured. The results indicate that hydrogen introduction by plasma irradiation shows as well as aluminum introduced by thermal diffusion can form of shallow donor states. Thus, the current results indicate that stimulated emission behavior has strong relationship with donor concentration. At the present stage, the doping effect on stimulated emission threshold is attributed to passivation of ionized defects formed in as-deposited films. We speculate that some kinds of ionized defects act as non-radiative recombination center to reduce luminescence efficiency and thus non-radiative centers were likely passivated by electrons injected by hydrogen or Al donors.

EE10.4 ZnO Light-Emission Array Fabricated into Nanometer Scale Pins on Silicon Substrate. Naoki Ohashi1, Kazuyoshi Kobayashi2, Hitoshi Masaki1, Isao Salaguchi1, Hajime Haneda2, Hirokazu Chazama1 and Masayuki Fujimoto3; 1 Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Ibaraki, Japan; 2 Taito Yuden Co., Ltd, Haruna-machi, Gunma, Japan; 3 Graduate School of Electronic Science and Technology, Shizuoka University, Hamamatsu, Shizuoka, Japan.

ZnO is well-known photosensitive material with blue-green light emission and is widely applied to vacuum fluorescence display (VF) and field emission display (FED) panels because of high emission efficiency under low electric field, e.g., 20 eV. On the other hand, patterning of light emitting elements is also critical importance; however, patterning of large-area emitting matrix is limited due to the existence of large electric field. In FEDs are restricted to screen-printing. The use of relatively large photosensitive pin is likely one of the causes of the limitation of image resolution in FEDs and FEDs, because microfabrication technology for silicon based materials enabled high density integration of micro-electron-emitter arrays. To obtain high resolution of ZnO phosphor pattern, the effect of direct patterning of ZnO using self-assembled mono-layer (SAM) was actively pursued before. However, luminescence properties of the patterned ZnO deposited from aqueous solution is a little poor for practical applications and additional thermal treatments are necessary to improve luminescence efficiency. In the present work, we tried and succeeded to fabricate nano-meter order ZnO light emission arrays on Si substrate using chemical mechanical planarization (CMP) and metalorganic chemical vapor deposition (MOCDV) which are indispensable technologies of multi level metallization of CMOS. Arrays of square pyramidal pits surrounded by 1000 nm wide plane on (100) Si by a selective etching technique using a mask pattern prepared with photo-lithography. As a result, an wafer with square pyramidal pits (1 μm × 1 μm and 1.7 μm × 1.7 μm) was obtained, and this wafer was used as a substrate for ZnO thin film deposition. ZnO thin film was grown from of zinc acetyleneate monomerode (CHS(COCH)=CCH2) as a source material with Ar carrier gas at deposition temperature of 800°C on the substrate using an electron cyclotron resonance(ECR) plasma assisted MOCDV. The ZnO thin film deposited substrate was polished with Al2O3 powder and 0.1 mol% of HCl solution using CMP. The top surface of ZnO film was removed and the ZnO deposited into the pins was remained. The luminescent polishing method gave smaller radius of curvature. Finally 800 nm X 800nm and 250nm X 250nm of square shape of pins array of ZnO were obtained. Each ZnO pin showed only the excitation band-edge luminescence. This indicates that CMP process did not influence active defect causing efficiency degradation of ZnO luminescence. Although, mechanical damage is one of the most critical problem to cause degradation of ZnO luminescence. Namely, the present results indicates that CMP process applied in this study is appropriate for making of ZnO for optical applications. It was clearly illustrated that micro-meter scaled and nano-meter scaled ZnO filled pits both emitted band-edge luminescence quite well.

EE10.5 Zinc oxide quantum dots embedded films by metal organic chemical vapor deposition. S. T. Tan1, X. W. Sun1, X. H. Zhang2, B. J. Chen3 and S. J. Chua1; 1Electrical & Electronic Engineering, Nanyang Technological University, Singapore, Singapore; 2Institute of Materials Research and Engineering, Singapore, Singapore.

The ZnO quantum dots (QDs) were grown on Si (100) by MOCVD. The growth temperature was set at 350°C. DimethylZinc (DMZn), N₂ gas and high-purity O₂ were used as the zinc source, carrier gas and oxidizing agent, respectively. The flow rates of DMZn and O₂ were set at 20 sccm each for the QDs fabrication. The DMZn bubbler was kept at -10°C in a coolant water bath. For comparison purpose, a highly c-axis oriented ZnO thin film was grown at 350°C with the flow rate of DMZn and O₂ maintained at 3 sccm each. The ZnO films were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) excited with a 325 nm line He-Cd laser of 30 mW at a temperature of 80 K. From the XRD measurement, the ZnO film grown with DMZn and O₂ at a flow rate of 3 sccm each exhibits highly c-axis oriented structures. The crystallinity of QDs embedded film is poor and exhibits polycrystalline structures with the existence of various crystallographic planes. By using Scherrer’s formula, the grain size corresponding to crystallographic plane (100), (002), and (101) was estimated to be 3.45, 9.92, and 4.83 nm, respectively. The HRTEM images of the ZnO QDs embedded film show clearly that the ZnO QDs were uniformly distributed in the film and the size of the QDs measured was in the range of 3 to 12 nm. The QDs size was plotted as histogram and the distribution can be well fitted with the Gaussian distribution. Most QDs were distributed at around 6 nm in diameter. The PL of the highly c-axis oriented and QDs embedded ZnO thin film were measured at temperature 80 K. The PL spectrum of the highly c-axis oriented ZnO film is dominated by the near-band-edge emission (NBE) at 3.36 eV, which is attributed to the neutral donor-bound exciton (D X). Comparing the PL of QDs embedded film measured at 80 K and room temperature, there is a obvious change in the NBE shape. At temperature of 80 K, the emission peaks at 3.358 eV (D’X) and 3.509 eV can be identified even with the presence of the interference noise. The quantum confinement effect of the band tail emission could be observed from PL measurement. Using the equation that governs the QDs band gap energy, the QDs band gap of the dot size of 3 to 12 nm was calculated to be 4.3 eV and 3.425 eV, respectively. The percentage of emission peaks at 3.36 eV, 3.358 eV and 3.509 eV was determined by integrating the area under the peaks and the percentage of 3 nm QDs, their contribution to the emission is weak. Hence, its corresponding emission could not be observed in the PL measurement. Meanwhile, for the most distributed QDs with diameter of 7 nm, the corresponding emission calculated was 3.503 eV. The emission peak 3.509 eV at 80 K PL measurement is then due to the quantum confinement ZnO QDs.

EE10.6 Laser Assisted Molecular Beam Deposition of High Mobility Zinc Oxide. Meiya Li1, Nehal Chokshi2, Robert L. DeLeon3, Gary Tompa4 and Wayne A. Anderson5; 1Electrical Engineering, SUNY at Buffalo, Buffalo, New York; 2AMB Tec Corporation, Tonawanda, New York.

Laser Assisted Molecular Beam Deposition (LAMB) enables the deposition of a wide variety of materials at room temperature, making it a promising technique to deposit various critical layers for flexible
displays and other applications utilizing flexible substrates. We have utilized LAMBDA to deposit Zinc Oxide (ZnO), a II-VI semiconductor material, as a thin film material. The LAMBDA process utilizes an excimer laser induced ablation plume of zinc in combination with pulsed oxygen gases to create a molecular beam of ZnO clusters. The deposited films have been characterized structurally and optically. The thickness and optical properties of these thin films were defined using ellipsometry, with values ranging from 99 to 230 nm, and 1.21 to 1.66, respectively. Films tested after laser-annealing have smaller values of refractive index when compared with as-deposited films. The scanning electron microscope (SEM) images confirmed the thicknesses, gave surface morphology and indicated a difference in morphology when comparing laser-annealed and as-deposited films. A non-linear behavior was exhibited in both as-deposited and 400 °C-annealed contacts. Resistances for both 400 °C-annealed and 600 °C-annealed contacts were reduced at least one order of magnitude compared to the as-deposited contact. Contacts annealed at 600 °C showed a linear ohmic behavior and resistance slightly improved compared to the contact annealed at 400 °C. Annealing in air gave a lower resistance compared to vacuum. This is clearly seen on the laser-annealed samples. The values of conductivity (\(\sigma\)) due to 100 mW/cm² solar-simulated light were calculated to be 2.8 \times 10^{-4} \text{ ohm}^{-1} \text{ cm}^{-1} and 3.04 \times 10^{-5} \text{ ohm}^{-1} \text{ cm}^{-1} for laser-annealed samples under air ambient and forming gas treatments, respectively. Additionally, ohmic contact concentration and Hall effect mobility of both as-annealed and laser-annealed samples were measured at room temperature. For one set of samples, the carrier concentration and Hall mobility were \(88 \times 10^{16} \text{ cm}^{-2}\) and 12.3 cm²/Vs for the as-deposited film; 1.12 \times 10^{13} \cm² and 21.5 cm²/Vs for the laser-annealed film, respectively. ZnO films deposited and laser-annealed under other conditions gave a Hall mobility value up to 244 cm²/Vs. Auger electron spectroscopy (AES) data will also be reported.

EE10.7 Substrate Variation effect on electrical and magnetic properties of Mn doped ZnO with different thickness of Dilute Magnetic Semiconductors

Srikanth Manichiraju, Govind Mundada, T. Kehl, B. Robertson, Kunal Paul and K. Ghosh; Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri.

Diluted magnetic semiconductors are semiconductors doped with ions that have a net spin. These types of materials have a lattice structure similar to that of semiconductors, at least for the diluted magnetic case. Potential applications are in the field of spin-dependent semiconductor electronics and optoelectronics, or so-called spintronics and optospintronics. ZnO and TiO₂ doped with 3d-magnetic ions have been studied because they exhibit magnetic behavior despite the fact that the origin of magnetic behavior is not clearly understood. Pulsed laser deposition (PLD), a novel technique to realize epitaxial/highly oriented thin films of oxide electronic materials would be used to develop high quality thin films. The degree of film densification and size of specific defects (i.e., pores, grain boundaries, cavities, etc.) is strongly dependent on the processing temperature and particular substrate. The substrate material can influence the kinetics of film growth having different thermal conductivity, specific heat and emissivity. Its selection is significant for growth of thin films because matching in lattice parameters and crystal structure between the film and substrate significantly affects the crystal growth behavior of the film. Epitaxial films were produced with the thickness varying between 50 and 250nm on Silicon and Sapphire substrates, by means of the pulse laser deposition method that films have been grown under the same growth conditions. Substrate temperature of 600°C, Oxygen atmosphere and pressure of the order 1e-5 were maintained during growth. The effect of substrate on the microstructure and magneto-transport of epitaxial ZnO thin films have been reported. Structural, Surface Magnetic and Optical properties have been observed on both Silicon and Sapphire substrates with different thickness using X-Ray diffraction, AFM, SEM, Magneto-transport and Raman spectroscopy. X-Ray Diffraction pattern shows that films have an epitaxial orientation. It confirms the wurtzite structure without any impurity phase. AFM images show that film surface is smooth with RMS roughness of the order of 1-nm over 5x5μm². SEM images confirm films of single phase. Raman Spectroscopy also confirms the epitaxial nature of the films on various substrates. Magneto-transport properties have also been investigated which includes carrier concentration and mobility. Carrier concentration of film on Si is 2 \times 10^{19} \text{ cm}^{-3} increased to 8 \times 10^{19} \text{ cm}^{-3} by changing the temperature. Similarly, mobility decreased in sapphire to a value of 1.3 cm²/Vs in Silicon by substrate change. Other substrate variation studies being investigated were glass and quartz. Detailed results on various substrates will be presented in future. This work is supported by the National Science Foundation (award number DMR-0321187) and Research Corporation (award number CC1609).

EE10.8 Czochralski Crystal Growth of Zinc Oxide-Tellurium Oxide System

Czochralski (CZ) technique was employed in an attempt to grow a single crystal of the system ZnO-Te₂O₅. The grown crystal has a high resistivity of the order 10¹³ Ωcm. A good quality grown crystal is expected to be with a transparent light color. The optical band gap will be presented. Different mole percentages have been tested for growth. The mole percentages that have been tried are ZnO-Te₂O₅ (21\%:79\%, 35.5\%:64.5\%, 40\%:60\%, 50\%:50\%). These mole percentages will be shown to have a melting point above 580°C. At the beginning of the research, no phase diagram was available for this material. No one has reported the growth of a single crystal of this material using CZ technique or any other method. Powder X-Ray Diffraction of the resultant material shows that 40\%:60\% has a monoclinic crystal structure with the lattice constants of 12.7 Å, 11.8 Å, and the angles of 90°, 99.6°, 90°. The 50\%:50% has the orthorhombic crystal structure, with the lattice constants of 7.3 Å, 6.4 Å, and 12.3 Å.

Several attempts were performed to pull a single crystal. It was found that the best mole percentage is 35.5\%:64.5\%. The grown material grows in a uniform pattern, such that necking and coning are noticed. Single crystals were isolated and studied, each one of them were transparent. Some of them were colorless, while some appeared dark green or brown. In the crystals that seem brown, the Scanning Electron Microprobe shows that they are of the same phase as the colorless ones, but internal fractures in the colorless ones cause them to appear brown. Some electrical measurement results of these single crystals will be presented. Other mole percentage to form phases. As an example: 40\%:60\%-ZnO-Te₂O₅ tends to form four different phases during the growth. Two are major (Zn₉₃Te₃O₈, Zn₉₃Te₃O₈), and two are minor (Zn₉₃Te₃O₈, Zn₉₃Te₃O₈). In fact, in the last phase, Te has a valence number of 6. This material is very rare and has never been reported in literature. A glass was also made out of the 35.5\%:64.5\% mole percentage. The conditions to make glass from this material was established, such that if the cooling rate was fast (1K/min-10K/sec), glass will form instead of crystalline material. The color of the resultant glass is yellow. This type of glass is of exceptional significance. With a high refractive index between 2 and 2.5 in addition to its high transmissivity, and a low glass transition temperature around 328°C. This makes the glass a perfect candidate for manufacturing fiber optics. Some transmission and absorption tests were also conducted on the glass. We would like to thank the support from: the Space Missile Defense Command (SMDC), Contract Number: DASG60-02-C-0084.

EE10.9 Investigation of Optical and Electrical Properties of Co-Doped ZnO Thin Films

Kousik Samanta, Pujjush Bhattacharya and Ram S. Katiyar; Physics, Univ. of Puerto Rico, San Juan, Puerto Rico.

Thin films of Co doped ZnO have been extensively studied for high Curie temperature dilute magnetic semiconductor (DMS) after theoretical predictions. However, the experimental reports have not clearly demonstrated that the observed ferromagnetism is from the undoped secondary or some segregated secondary phase. In this study, we have studied in detail of its optical and electrical properties with Co doping (1-20%) in ceramic and thin films in order to understand the effect of Co doping and to identify the secondary phases. \(Zn_{1-x}Co_xO\) thin films were grown on Al₂O₃ (0002) substrates by pulsed laser deposition technique. The ceramic targets were prepared by the mixing of ZnO and Co₂O₃ powders with stoichiometric amounts \((x = 0.01, 0.05, 0.10, 0.15 \& 0.20)\) and using standard ceramic processing. PL spectra of \(Zn_{1-x}Co_xO\) ceramics and thin films were carried out in the temperature range 77K to 300K using UV 351nm exciting radiation from an Ar⁺ laser. Free excitonic and bound excitonic peaks were observed at 3.4 and 3.8 eV at \(Zn_{1-x}Co_xO\) ceramics and thin films. In the case of Co doped ZnO ceramics the free excitonic peak shifted by \(\sim\)0.5 eV from the undoped ZnO. Although in the thin films band gap of \(Zn_{1-x}Co_xO\) was increased from 3.2 to 2.8 eV, there was no redshift of the free excitonic peak observed in the PL of thin films. The resistivity of ZnO thin films increased and the mobility decreased with the increase of
Co concentration. Temperature variation of PL and detailed electrical characterization in correlation with Co concentration will be presented. The authors acknowledge partial financial supports from DE-FG-02-01ER45888 and NASA/NCCS-1034 and DAAD 19-03-1-0084 grants.

EE10.10

Structural and Spectroscopic Studies of ZnO and GaN

Powders Calcined with Transition Metal Oxides. Loji Noice1, Bjorn Seipel1, Chunlei Li1, Amita Gupta1,2, Peter Mosch1, Rolf Ehrni3, Nigel D. Browning1,4,4.1, Frank Owens5,2, and K. V. Rao1,2

1Department of Physics, Portland State University, Portland, Oregon; 2Department of Materials Science, The Royal Institute of Technology, Stockholm, Sweden; 3Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California; 4National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California; 4Department of Physics, Hunter College, City University of New York, New York, New York.

Researches at Portland State University, the National Center for Electron Microscopy (at the Lawrence Berkeley National Laboratory), Hunter College New York, and The Royal Institute of Technology collaborate on the development and characterization of dilute magnetic semiconductors for potential spintronics applications. After the theoretical prediction that wide band-gap semiconductors may attain Curie temperatures well above room temperature when doped with transition metals (Dietl T., Ohno H., Matsukura F., Cibert J., and Ferrand D. Science 287 (2000) 1019), ferromagnetism above room temperature was reported for zinc oxide doped with manganese (Sharma P., Gupta A., Rao K.V., Owens F., Sharma R., Ahuja R., Guileen J., Johansson B., and Gehring G. Nature Materials 2 (2003) 673). Additional doping with copper by is several authors considered beneficial to support magnetic coupling by introducing holes. At Portland State University, calcined powders of zinc oxide that originally contained a few percent manganese dioxide and copper oxide were analyzed using qualitative and quantitative powder X-ray diffraction. The results suggest incorporation of manganese and copper into the zinc oxide lattice with corresponding shifts in the semiconductors lattice constants. Obtained powders of gallium nitride that originally contained a few percent copper oxide where analyzed using energy dispersive x-ray spectrometry (EDXS), electron energy loss spectrometry (EELS - at the National Center for Electron Microscopy), and quantitative X-ray diffraction. Shocks in the semiconductor's lattice constants were detected by the application of the Rietveld method. This supports the conclusion of copper incorporation into the gallium nitride lattice. Consistent with the Rietveld analysis, EDXS indicated expansions in the c-axis direction. EDXS, on the other hand, proved the incorporation of copper into the gallium oxide lattice. Although not a constituent of the precursors of any calcined sample, copper oxide diffraction was found in all the gallium nitride powders but not in the zinc oxide powders.

EE10.11

Time resolved photoluminescence study of ZnO nanorods grown on GaN by hydrothermal synthesis. Quang Le Hong, National University of Singapore, Singapore, Singapore.

Well-aligned ZnO nanorods with diameter 100nm and height 2um grown on GaN were fabricated by using hydrothermal synthesis at low temperature 100°C. The time resolved PL measurement at free exciton peak were carried out to characterize the optical quality of the ZnO nanorods. The decay profiles were single exponential form and the decay constant of 8ns was obtained using a least square fit of the data. In addition, the time resolved measurements had been performed at different excitation powers and at different temperatures, from 4K to room temperature. With increase of the pump power, the transition from exciton stimulated emission to the excitonic free exciton recombination can be clearly observed. By varying the temperature from 4K to 300K, the measured decay time decreased accordingly. We found that the nonradiative recombination process play an important role and dominate the decay of exciton population at high temperature. This process depends on the density of defects and impurities of the ZnO nanorods.

EE10.12

Effect of Substrate temperature, ion implantation and annealing studies of ZnO films prepared by Pulsed Laser Deposition. Selvaraj Venkataram, Haruki Royken, Isao Sakaguchi, Naoki Ohashi and Hajime Haneda; ceramics group, Advanced Materials Laboratory, National Institute for Materials Science, I-1 Namiki, Tsukuba, Ibaraki, Japan.

Zinc oxide (ZnO), is one of the II-VI semiconductors with excellent structural, optical and electrical properties, finds numerous applications in modern technology and has recently attracted considerable attention. High quality ZnO thin films have been prepared by pulsed laser deposition (PLD) technique on sapphire substrates for different temperatures. The structural and optical properties of ZnO films were investigated in terms of deposition conditions, such as substrate temperature, ion implantation and post growth annealing. The film properties have been studied using different techniques such as X-ray diffraction (XRD), Atomic force microscopy (AFM), Photoluminescence (PL), Raman and optical spectroscopy. The X-ray diffraction measurement reveals that the films are highly textured in c-axis and the quality of the film texture improves with the increasing substrate temperature. Both rocking curve and AFM measurement show grain growth as the substrate temperature increases. The room temperature PL spectra shows strong peak near the band edge at 380 nm and a very weak emission centered at 450 nm, which is attributed to oxygen vacancies. The characteristic Raman vibrational modes prove the hexagonal (wurtzite) crystal structure of ZnO which is also evidenced from XRD measurements. From the optical spectroscopic measurements, it has been observed that the film possesses nearly 80% transparency in the visible region with a band gap value of ~3.15eV. The present study reveals that the ZnO films synthesized by PLD express fairly good optical properties and low defect density as well as excellent crystallinity. The transition metal ion implantation and post growth annealing studies are in progress and the results will be presented in the conference.

EE10.13

Roles of Laser-Ablation of Mn in Initial Stage of Growth of ZnO Nanorods by Chemical Vapor Deposition. Takashi Hirata, Hitoshi Miyashita, Takashi Kimpara, Kazutoshi Takahara, Tomonosa Satoh; Faculty of Engineering, Keio University, Yokohama, Japan.

ZnO is an attractive II-VI compound semiconductor material for various optoelectronic devices due to its wide band gap of 3.37 eV at room temperature and its large excitonic binding energy of about 60 meV. Recently, growth of various nano-structures of ZnO such as nanorods, nanobelt, nanowall, etc. has been reported. A report on initial stage of growth of these ZnO nanostructures, however, is few. We have studied on fabrication of ZnO nanorods by a low-pressure thermal chemical vapor deposition (CVD) method cooperated with a laser ablation of Mn, and found that the laser ablation has drastic effects on morphology of ZnO nanorods. In this paper, we studied on an effect of laser ablation of Mn at an initial stage of growth of ZnO nanorods. The fabrication method is almost same method used in our previous study. Metal Zn vapor and O2 gas are used as precursors to synthesize ZnO, and N2 is used as carrier gas. A metal Mn pellet is placed near a Si(111) substrate in a deposition chamber and ablated by a pulsed Nd:YAG laser beam (wavelength = 1.064 mm, pulse width = 8 ns, repetition frequency = 10 shots/sec). When the laser is not used, randomly oriented ZnO nano-whiskers are only grown and well-oriented ZnO nanorods are not grown. The growth conditions are as follows. O2 flow rate is 1.5 sccm. The growth temperature is 550 C. The growth pressure is 27 Pa. The laser energy is 0.314 J/mm2 and the laser-irradiated area of the sintered ZnO pellet is 0.13 mm2. Laser ablation and CVD are simultaneously started at t=0, and only laser ablation is stopped at t=LABL. CVD is continued since then and terminated at t=TCVD. We studied on the case of LABL=30 sec, 1 min and 3 min, and t=TCVD=30 sec, 1 min, 3 min and 15 min, satisfying TABL <= t=TCVD. When t=LABL = t=TCVD, i.e., both laser ablation and CVD are also simultaneously stopped, experimental results are as follows. In the case of t=LABL = 0 sec, i.e., no laser ablation, a very thin columnar ZnO layer is formed. This layer is continuously formed on a Si(111) substrate and is very different from that formed by CVD without laser ablation where very fine discrete islands are formed with low number density. Both the thickness of this layer and the size of each columnar grain become larger with increasing t=LABL (= t=TCVD). When t=LABL = t=TCVD = 3 min, an initiation of growth of ZnO nanorods is observed on the continuous layer of 280 nm thickness. We could consider also the effect on laser ablation of Mn play a role of formation of a columnar grain layer of ZnO in advance of growth. Once this layer formed, a ZnO nanorods grow on each grain and a single grain even when laser ablation is not performed. When the laser ablation is performed for longer time, the grain size become larger and the growth of nanorods is suppressed for some time period. Thus we can control the size and number density of ZnO nanorods by the laser ablation time t=LABL.

EE10.14

Concentration and Defect Dependent Ferromagnetism Above Room temperature in CO Doped ZnO Films: Metalorganic Decomposition. P. Kharel1, Vaman M. Naik2, Gavir Lawn3, R. Suryanarayanan1,3 and Ratna Naik1; 1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan; 2Department of Natural Sciences, U Michigan-Dearborn, Dearborn, Michigan; 3Permanent address: LPCES, Universite Paris-Sud, 91405, Orsay, France.
Research on inducing ferromagnetism at 300 K in semiconductor oxide materials is rapidly advancing because of their potential applications to spintronics. In particular, semiconducting oxides such as TiO$_2$ and ZnO doped with Mn, Co and Fe are expected to be ferromagnetic above room temperature. Recently, we have successfully used a simple non-vacuum based spin-coating technique to prepare thin films of anatase and rutile TiO$_2$-doped with Co and Fe that were ferromagnetic at 300 K. Here, we report on the preparation, XRD, EDX, Raman spectra and magnetization of thin films of Zn$_{1-x}$Co$_x$O (x < 0.10) spin-coated on glass using a mixture of the metal-organic precursors Zn-ethylhexanoate and Co-ethylhexanoate in proper proportions. The thickness of the films ranged between 0.5 to 1 μm. The samples were annealed in air at 550 °C for 60 min. The XRD and Raman spectra showed similar features to those reported by others to wurtzite ZnO. Magnetization studies on these samples did not reveal any ferromagnetic order at 300 K. The samples with x = 0.03 were then heat treated in vacuum at T$_{heat}$ = 500 and 600 °C. Only the samples that were heat treated at 600 °C, while showing strong ferromagnetic loops at 300 K indicating the crucial role played by T$_{heat}$. We further observed that ferromagnetism (FM) appeared only for a limited range of Co concentration, 0.03 < x < 0.10 (after heat treating at 600 °C). Our data seem to suggest that the appearance of FM is dictated by both the oxygen defects and the critical concentration of Co and thus may lend support to a recent model proposed by Coey et al. For a recent review, see, T. Fukumura et al., Semicond. Sci. Technol. 20 (2005) S103-2. R. Suryanarayanan et al., J. Phys. Cond. Matter 17 (2005) 755; Solid State Comm. 133 (2005) 439-43.J. M. Coey et al., Nature Materials 4 (2005) 173.

EE10.15

Nanotube growth and its semiconductor properties.
Patrick Welnitsch

John Muth

Anuj Dhawan

Jack Price

Noel Guardala

ECE Dept, North Carolina State University, Raleigh, North Carolina 27695

Electrical and Computer Engineering Department, National University, Singapore

A similar approach was used to manipulate the nanotube growth direction by controlling the catalyst or substrate. The resulting nanotubes were then used to fabricate devices that demonstrate semiconductor properties.

EE10.16

Indium, Gallium, and Aluminum Doping in Hydrothermal ZnO Bulk Crystals for Conducting Substrates.

Michael Cahillan

Buguo Wang

Lionel Bouthillète

Michael Suscavaga

Sheng-Qi Wang

SNlC, Air Force Research Laboratory, Hanscom AFB, Massachusetts

Solid State Scientific Corporation, Nashua, New Hampshire

ZnO based LEDs and laser diodes have not been demonstrated because of the inability to obtain p-doped ZnO thin films reliably at high concentrations. One possible reason for the difficulties in p-doping ZnO is the low concentration of p-type dopants, resulting from the high p-type dopant activation energy.

In this study, single crystal ZnO films are grown by pulsed laser deposition and ion beam processing is used to directly transmute oxygen into nitrogen. Analytical ion beam techniques were used to monitor the transmutation process, and changes in film characteristics are monitored by monitoring the nitrogen concentration, photocexcitance and photoluminescence measurements before and after ion beam processing. Post annealing steps were also explored as a means to reduce ion beam damage.

EE10.17

Time-resolved Biexciton Behaviors in a ZnO Thin Film.

Fang-Yi Jen

Yen-Cheng Lu

Cheng-Yen Chen

Hisang-Chen Wang

Chih-Chang Yang

Bao-ping Zhang

Yusaburo Segawa

Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan

PHOTODYNAMIC RESEARCH CENTER, The Institute of Physical and Chemical Research, Sendai, Japan

Because of its large exciton binding energy at about 60 meV, ZnO has attracted much attention in crystal growth and optical property characterization. With such a large exciton binding energy, the dominance of exciton recombinination in the radiative process, even up to the room temperature, results in the high photon emission efficiency. Normally, in photoluminescence (PL) measurement with low excitation, the emission of donor-bound exciton (D0X) dominates the spectrum at low temperature (4K) and that of free exciton (F0X) dominates at high temperatures. In the case of high excitation, the biexciton (XX) feature can be observed in a high-quality ZnO sample. Although the biexciton dynamics in other structures, as mentioned above, were in ZnO has not been well explored. In this paper, we study the ultrafast biexciton dynamics in a ZnO thin-film sample with time-resolved photoluminescence (TRPL) measurement. In the measurement, not only the emission line (the M line) of XX is observed, but also that of the D0X line of donor-bound biexciton (D0XX) can be clearly seen. The calibrated two-stage decay times are used to build the model of ultrafast biexciton dynamics in such a ZnO sample. The TRPL of the thin film was grown with MOCVD on (0001) sapphire substrate with 6 Torr pressure at 450°C for 90 min. The TRPL intensity profiles reveal the formation sequence of various types of exciton. After F0X are generated, part of these excitons are trapped by deep levels or form DOXX. The other part contributes to the generation of XXs through F0X scattering. Next, a donor-bound biexciton is generated through the trapping of a XX or two F0Xs by a neutral donor or the trapping of a F0X by a D0X. Except DOX, the relaxations of all other exciton states show two decay stages. Either the increasing or decreasing trend of the calibrated decay time in increasing the excitation power are well interpreted with a four-level model.

EE10.18

Temperature-dependent Exciton Dynamics in a ZnO Thin Film.

Yen-Cheng Lu

Fang-Yi Jen

Chih-Chang Yang

Bao-ping Zhang

Yusaburo Segawa

Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan

PHOTODYNAMIC RESEARCH CENTER, The Institute of Physical and Chemical Research, Sendai, Japan

Temperature-dependent exciton dynamics has been an interesting issue in understanding the basic optical properties of semiconductors. Theories and experiments based on GaAs have shown that the free exciton emission lifetime is related to the photoluminescence (PL) spectral width in varying temperature. Here, the finite PL spectral width of free exciton at non-zero temperatures is due to the kinetic energy distribution of excitons and hence is expected to increase with temperature. With such a kinetic energy or momentum distribution, the radiative recombination rate increases from zero momentum to form of mass to a finite range. In this situation, the optical oscillator strength is shared (and hence reduced) by this range of energy. Therefore, the radiative lifetime of a free exciton (F0X) increases with temperature. Although such temperature dependences have been observed in other materials, those in ZnO are still not well understood yet. Particularly, because of the abundance of donor-bound exciton (D0X) in ZnO and the shallow nature of such a donor (binding energy only 8-10 meV), F0X and D0X are usually mixed in photon emission, particularly when the temperature is above 80 K. In this research, we investigate the temperature-dependent exciton dynamics by calibrating the decay time bases of time-resolved photoluminescence (TRPL) measurements. The ZnO thin film was grown with MOCVD on (0001) sapphire substrate with 6 Torr pressure at 450°C for 90 min. We measured the temperature-dependent photoluminescence spectral width of the mixed system of F0X and D0X in a ZnO thin film. From the measured spectral width, we also calibrated the spectral width of F0X and D0X and the related PL intensity of the mixed system by fitting the related spectral part with two Gaussian functions. The radiative lifetime of the mixed system was then calibrated based on the thermal quenching rate of the integrated PL intensity of the system. With the radiative lifetime data, the F0X radiative lifetimes were estimated by using a theoretical relation between the lifetime spectral width. From the results of F0X radiative lifetime, we could calibrate the D0X radiative lifetimes. The results support our model that the D0X radiative behavior is similar to that of F0X when the thermal energy is smaller than the donor binding energy.

EE10.19

Comparisons of Nano-material and Optical Characteristics of ZnO Grown on GaN and Sapphire.

Shu-Cheng Chi

Shu-Cheng Chih

Chung-Yung Chi

Chih-Chung Yang

Chung-Yung Chi

Chih-Chung Yang

Bao-ping Zhang

Yusaburo Segawa

Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan

PHOTODYNAMIC RESEARCH CENTER, The Institute of Physical and Chemical Research, Sendai, Japan

The immature developments of p-type ZnO and ZnO-related ternary or quaternary compounds driven the need for the use of ZnO and GaN. This idea is particularly interesting because of the small lattice mismatch between ZnO and GaN. Although the hybrid growth of ZnO with p-type GaN has led to the implementation of light-emitting devices, the material and optical properties of ZnO on
GaN have not been well studied yet. In this research, we investigate the differences of nanostructure and optical property of ZnO thin film between the samples grown on GaN and on sapphire. In material analysis, based on the technique of high-resolution transmission electron microscopy, we particularly pay attention to the interface structures between ZnO and GaN or sapphire. It is found that with a relatively high growth temperature (200 ± 5°C), the GaN c-axis growth plane orientation twist of ZnO with respect to its underlying layer (sapphire) in the case of on-sapphire growth was not observed in ZnO grown on GaN. This observation is confirmed with the measurement of X-ray diffraction. Although both growth induced defects are the same, the thermal behavior of GaN and ZnO on sapphire shows different temperature-dependent behaviors. The thermal quenching behaviors of the integrated PL intensity, which represents non-radiative recombination strength, of the two cases are almost the same. However, of the samples grown at the low temperature, the photon emission efficiency of ZnO on GaN is much higher than that of ZnO on sapphire.

EE10.20 Effects of Growth Temperature on Nano-structure Characteristics of ZnO Thin Films on Sapphire.
Shao-Chung Chi4, Fang Yang5, Chi-Hsuan Chi1, Wen-Ren Shiao2, Fang-Yi Jen6, Yen-Cheng Lee7, Lin Hong8, Yu-Li Lin1, Chih-Chung Yang9, Bao-ping Zhang2 and Yusaburo Segawa2;
1Institute of Electro-Optical Eng., National Taiwan University, Taipei, Taiwan; 2Photodynamics Research Center, the Institute of Physical and Chemical Research, Sendai, Japan.

The nanostructures of ZnO heavily rely on the growth conditions, particularly on the growth temperature and pressure. By decreasing the growth pressure, the ZnO nanostructures change from nanorods into nanotubes and then nano-walls. ZnO nano-rods, nano-tubes, and nano-walls are normally obtained at 10-6, 1-0.3, and 0.1-0.06 Torr, respectively, in growth pressure. In growth temperature dependence, when the growth temperature is lower than 250°C, smooth surfaces without grain formations were observed. The diffusion of atoms on the surface is suppressed at low growth temperatures. However, when the growth temperature is high, the kinetic energy of zinc atoms becomes high, and it is expected that the zinc atoms will become more diffusive on the substrate surface and select sites having smaller lattice mismatch. When the growth temperature is higher than 300°C, we can normally observe that the unit cell of ZnO is twisted in the c-plane by 30° with respect to that of Al2O3. The in-plane orientation can be controlled by an appropriate selection of the growth temperature that can lead to different growth modes at the initial stage of growth. In this research, we compare the nano-structure characteristics of ZnO nano-rods on sapphire under different growth temperature conditions. Although disconnected spiral domain structures (on the scale of 100 nm in size) are observed in the samples of high-temperature (450-500°C) growth, their crystal quality is generally better than the one grown at a lower temperature (300°C) either near or away from the sapphire interface. Lattice misfits and threading dislocations are observed within a domain with the separation of around 8 nm. The sample grown at the low temperature shows a connected structure through the ZnO layer. However, its crystal quality is relatively poorer. Of the two samples with high-temperature growth, the one with initial low-temperature growth has a larger domain structure (around 150 nm in size) and relatively lower crystal quality. In particular, strong strains exist near the interface of this sample. The samples of high-temperature growth generally have higher photon emission efficiencies.

EE10.21 Manipulation of ZnO Nanowire by Low-Temperature Solution Approach.
Chia-Hsin Lin, Materials Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan.

A catalyst free, structure-induced heterogeneous nucleation and direct growth of ZnO nanowires on organic and inorganic substrates was prepared by low-temperature solution process. The experimental results showed that ZnO thin films directly synthesized upon the concave of substrate without any pre-seeding. In this work ZnO nanowires were grown on both polystyrene head layer and physical-grinded wafer substrate. ZnO nanowires with a broad aspect ratio of 0.01 ~ 100 was controlled mainly by adjusting of reactant concentration and pH state of solution. A needle-like ZnO nanotip were also prepared by a two-step limited growth condition as a result of several nanometers only, which is highly in favor of the field emission. ZnO nanotips showed a turn-on voltage as low as 3V/μm and a high emission current density of 2mA/cm2 under the field of 7.5V/μm. These unique characteristic were attributed to a high aspect ratio of ZnO and a direct growth surface of substrate without the influence of barriers such as catalyst layer. Structure-induced heterogeneous nucleation and growth facilitates the fabrication of ZnO nanowires as a result of low turn-on voltage and density, that makes the ZnO nanowires as the potential photoelectric units in field-emission displays.

EE10.22 Electrical Properties of Diamond MISFTes with Submicron Gate on Boron-doped (111) Surface. Kyung-cho Park1, Takayasu Saito1, Kazuyuki Hiranuma2, Hitoshi Umezawa3, Mitsuji Satoh2, Hiroshi Kawarada3 and Hideyo Okushii3; 1Diamond Research Center, AIST, Tsukuba, Japan; 2Department of Electrical Engineering and Bioscience, Waseda University, Tokyo, Japan.

Diamond semiconductor devices are expected to be of importance for high power and high frequency applications based on its excellent properties. Fabrication of low resistive semiconductor diamond on a substrate and its smooth surface morphology. Based on the developed works as MESPFT and MISFET on H-terminated surface on (100) substrate, the cut-off frequency over 20 GHz was achieved recently. On the other hand, limited number of devices characterized on H-terminated (111) surface were reported. Moreover, besides several diamond process Integration issues, such as, contact formation, and gate fabrication, there is still very limited number of information about the best matching materias of the gate insulator, and passivations. In this study, the p-type surface conductive layer of B-doped diamond on Al2O3 was employed to fabricate MISFTes using three kinds of gate insulators, namely CaF2, SiO2, and Al2O3 with submicron gate length. We present comparative study between properties of (100) surface and (111) surface with each device features. As well, what is appropriate Gate Insulator materials for the diamond device under normal requirements such as low leakage and low surface states, high breakdown voltage, and no damage for H-terminated surface. The CVD Diamond homoepitaxial (111) layer showed the sheet resistivity, surface morphology and carrier concentration of H-terminated surface of 25μm/μ, 350μm/2, 20μm/μ, respectively, when bulk carrier concentration is 3E+15/cm3. The carrier mobility on hydrogenated (111) surface acquired in this study was found to show clear dependency on CH4/H2 concentration from 0.1% to 1.5% in the air. This value was still a quarter of that obtained on (100) samples. In MISFET fabrication processes, An evaporation on H-terminated region was employed as the source and the drain. Inductively coupled plasma etching process was used for the isolation procedures. Self-aligned gate formation processes with 1-4um gate lengths were carried out by employing (CaF2, SiO2, Al2O3) and Cu stacked GOI structures. Sample of CaF2 gate (111) MISFET exhibited comparable characteristics, Id, gm and RF performance with (100), suggesting there is no major differences in different H-terminated surface utilized devices. The maximum drain current and transconductance as 240μm/μm and 85μm/μm, respectively, were obtained. This exhibited the cut-off frequency as 4GHz, which is one of the best value among other derived diamond [100] devices. This work was carried out under Advanced Diamond Devices Project, The New Energy and Industrial Technology Development Organization (NEDO), Japan.

EE10.23 Barium Trace Detection in Oriented ZnO Films Grown by MOCVD. Lianhiran Sang1, Zhe-ming Wang4, Scott Loe9, Mark Englehard2, Cheng-min Wang1, Mark Vazquez3, and Scott Beauchamp2;
1Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington; 2Fundamental Science Division, Pacific Northwest National Laboratory, Richland, Washington.

Excellent optical emission properties of ZnO can potentially be used to detect the effect of dopants in it, which potentially can be used for the detection related applications. The structural anisotropy in hexagonal ZnO makes it easier to naturally grow oriented ZnO films in c-axis out-of-plane direction. We are in a process to study barium contamination effects in oriented ZnO films grown by MOCVD. In this work, ZnO grown on Si(100) at 10 Torr combined partial pressure of oxygen and argon with a total gas flow of ~2500 sccm. Initial emission tests at liquid helium temperatures indicate an extra emission peak at 353 nm apart from normally observed ZnO emission based in the range of 360 nm to 400 nm. Detailed analysis on these samples is also carried out by using XRD, AES, XPS and HRTEM to establish a correlation between structural and surface properties with its emission properties. HRTEM measurements indicate excellent alignment of ZnO atomic
planes parallel to Si (100) surface. These results are discussed in the context of selective substitution of future magnetic element dopants and/or purposeful design in ZnO to modify its physical properties in order to tune them for exciting applications in the area of spintronics and sensors.

E10.24

On the role of group I elements in ZnO. Bruno Meyer1, Joachim Sann1, Niklas Volbers1, Arndt Zeuner1, Axel Hoffmann2 and Ute Haboeck2, 1: Physikalisches Institut, Giessen, Germany; 2: Solid State Physics Institute, Berlin, Germany.

Diffusion of Li, Na and K into single-crystal substrates of ZnO were performed. We compare the results with ZnO epitaxial films doped with the respective elements during growth. The diffused and in-situ doped films were investigated using X-ray diffraction, low temperature photoluminescence and Raman spectroscopy. Li and Na are known to produce deep acceptor centers which give rise to shallow donor to deep acceptor recombinations in the visible spectral region. We will demonstrate that also shallow acceptors are introduced having binding energies around 300 meV. A donor-acceptor pair recombination (zero phonon line at 3.05 eV) with LO phonon replica is observed analogous to the "edge" emission in other II-VI compounds.

E10.25

A TEM Investigation of the Nitrogen Effect on The Structure of Mn-Doped ZnO Thin Films Deposited by RF Magnetron Sputtering. Retterbellinger1, Rubenstein2, Mons Aounazid3, C. Liu2 and Hadi Morkoc2, 1: SIFCOM, ENSICAE, caen, France; 2VCU, Richmond, Virginia; 3: Institut de Ciencies de Materiales de Madrid, Madrid, Spain.

For Mn-doped ZnO thin films, deposited by using RF magnetron sputtering on c-plane sapphire substrates, the magnetic properties of the Mn-doped ZnO films have been measured by using a superconducting quantum interference device magnetometer. Magnetization vs. magnetic field curves was observed at room temperature.

Coepland with nitrogen increases the magnetization of the layers. Using transmission electron microscopy we investigate the evolution of the crystalline quality with the nitrogen co-doping. The results show that the magnetic properties are enhanced in the best crystalline quality layers which do not exhibit phase separation in form of precipitates. Their columnar structure due to rough sputtering is not disturbed in these Mn and Mn doped layers. The origin of the ferromagnetic properties of the Mn-doped ZnO films will be discussed.

E10.26

Acceptor doping of ZnO layers: comparison of mono- and co-doping approaches. Andre Kritschel, Armin Dacuc, Nikolay Oleynik, Annet Died and Alois Kroft: Institute of Experimental Physics, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.

Despite a lot of research activities, successful acceptor doping in terms of stable p-type conductivity remains one of the major bottlenecks for ZnO-based optoelectronics. In order to better understand this topic, in this contribution we compare several doping approaches: conventional mono-doping with two potential acceptors, i.e. arsenic and nitrogen, as well as co-doping with both species. The special focus of our investigations concerns the doping impact on the local electrical properties and their appearance in integral characteristics. The samples under study were grown by metalorganic vapor phase epitaxy in a two-step growth process on GaN on sapphire templates. After the growth of a ~300 nm thick ZnO layer deposited at 450°C using DZn and tert-butanol a high temperature ZnO layer was grown at 850-900°C using DZn and N2O. For doping experiments, the high temperature layer was doped with arsenic using AsH3 and nitrogen using unsymmetrical-dimethylhydrazine. The local conductivity type was determined by scanning capacitance microscopy (SCM), a method based on an atomic force microscopy setup which measures the local carrier concentration via the local C-V-curves with a resolution in the order of some tens of nanometers. We find in SCM that all mono-doped layers exhibit large n-type regions, but very local p-type or depleted inclusions around grain boundaries and growth defects. Conventional macroscopic C-V-analysis by a mercury probe reveals exclusively n-type depletion in these cases. Interestingly, for all co-doped layers this situation is completely inverted. Now, we mostly observe a so-called mixed conductivity instead of uniform carrier concentration and conductivity type, i.e. largely extended p-type domains with two-dimensional layers of p-type as well as local n-type regions at three-dimensional islands and defects. Macroscopic C-V-curves exhibit depletion in both voltage bias directions due to the coexisting n- and p-type regions. Furthermore, the doping parameters were slightly varied to optimize the vertical structural quality of the doped layers and to reduce the growth defects. As a result, we achieved a nearly homogeneous p-type layer (50x50μm2 scan area during SCM) containing only very few defects with corresponding carrier concentrations in the 1015 cm-2 range as determined from integral C-V-curves. The observed p-type conductivity after co-doping with As and N is reproducible for the whole sample set and long-time stable since several months.

E10.27

Hydrothermal growth of transition metal doped ZnO single crystals. Young Suk Lee, Korea Research Institute of Chemical Technology, Taejon, South Korea.

Transition metal (Mn and Fe) doped ZnO single crystals were grown by hydrothermal method using Pt and Ag wire and high pressure autoclave in KOH-based hydrothermal solution. Dimension of the as-grown single crystal is up to 40 X 30 X 10 mm3, which can be fabricated to 1-Inch ZnO crystal substrate. Maximum growth rate was about 0.23mm/day. X-ray diffraction study revealed that the Mn ion located at Zn site substitutionally. Some important structural optical and magnetic properties of transition metal doped ZnO single crystals are also discussed.

E10.28

Nitrogen Incorporation Kinetics in Organometallic Vapor Phase Epitaxy of In(Ga)AsN/GaAs(001) Using 1,1-Dimethylhydrazine. Jean-Nicolas Beaumé1, 2, 3, René A. Masu1, 2, 3, and Patrick Desjardins1, 2, 3, Engineering Physics Department, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada; 4: Regroupement quebecois sur les materiaux de pointe, Montreal, Quebec, Canada; 5: Instituto de Ciencias de Materiales de Madrid, Madrid, Spain.

The current strong interest in dilute semiconductor nitrides stems from the fact that the addition of N in semiconductors such as GaAs retains both the band gap and the lattice constant. GaN also present very advantageous band alignment characteristics. These properties make them prime candidates for the fabrication of, for example, semiconductor lasers operating at telecommunication wavelengths. The key challenge for their integration is to control the N incorporation efficiency from the fact that N atoms are very small compared to the host. This leads to the so far uncontrollable incorporation of N on non-substitutional lattice sites and to a degradation of the optical properties with increasing N content. Our high-resolution x-ray diffraction results combined with secondary ion mass spectrometry analyses indicate that non substitutional N incorporation begins at x=0.05 in GaAsN as the perpendicular lattice parameter decreases faster than that predicted by Vegard’s rule. A prerequisite for the accurate control of N incorporation in (Inx)Ga1-xAsN, x, alloys during organometallic (OM) vapor phase epitaxy is a detailed understanding of the growth kinetics and surface processes. We have thus carried out a comprehensive study of the effect of growth temperature (Tg), growth rate, V/III ratio and reactor pressure on the incorporation of N. The samples were grown from trimethylgallium, trimethylaluminium, tertiarybutylarsine (TBAs), and 1,1-dimethylhydrazine (DMHy). Our complete set of results reveal two distinct growth regimes above and below 550°C. The N incorporation ratio [N]=x/(x-x)N(x-x), where =x= DDMH//3Dx + DDMH, is the OM flux ratio to the vapor phase and D = D(t) and D(t)=D(t) in an entangled way due to the complex pyrolysis of DMHy. [N] is rather low (0.0033) at 550°C and decreases even more with increasing temperature, being essentially zero at 650°C. [N] increases slightly to 0.030 up to Tg, 500°C, likely due to the incomplete pyrolysis of DMHy, known to involve byproducts such as the unstable NH2 in cold-wall reactor. We attribute the reduction in [N] at higher Tg to the parasitic decomposition of DMHy and the desorption of N-rich species as NH2 tends to transform to more stable NH3. At 575°C and above an increase in DMHy partial pressure (P) from 0.44 to 0.92 results in higher growth rates. This is concomitant with the change in nitrogen incorporation from one regime to the other. Ga incorporation is further increased involving the TMGa-DMHy adduct in the high temperature regime. For extremely large DMHy flow rates (x= 0.94 at 575°C), growth becomes nearly completely inhibited due to the passivation of the surface by DMHy. In these conditions, N incorporation in the solid phase increases sharply (x > 0.15) as the surface morphology of these extremely thin films is strongly degraded. Practically, N incorporation in GaNAsN/GaAs(001) is therefore limited to about x = 0.038.

E10.29

Ga-GaNAs quantum wells on GaAs substrates appear to be very attractive for promising applications (lasers for telecommunication, solar cells) but the question of composition modulation may strongly alter the optical or electronic properties of the heterostructures [1,2]. Thanks to the large difference of lattice parameters of the binaries involved in this quaternary alloy, the local structure of such alloys
GaN:InN films have found wide practical applications ranging from local emission wavelength optical semiconductor devices. The model used is Valence Force Field approximation, and we modelize a periodic Ga\textsubscript{1-x}In\textsubscript{x}N\textsubscript{A}As\textsubscript{B} alloy (period up to 32 atomic row) film (typically 24 atomic planes thick) deposited on GaAs substrate. We report to GaAs substrate (Ga:In\textsubscript{0.2}N\textsubscript{0.8} and x=0.025, 0.125, 0.25 and 0.375. The surface is dimerised (for simplicity we consider 2x1 anion rich surfaces). We start from random films and calculate first and second nearest neighbor distances and draw the corresponding spectra, then we allow the system to adopt their optimal location. This pseudo-annealing strongly enhances the number of In-N bonds, in agreement to experimental studies [3]. For each distance one can check the local chemical arrangement, and from this statistical study, show that fine structure of each peak of the spectra cannot be directly related to a given chemical distribution up to 3rd nearest neighbors. The position of the peaks appear not to be modified by alloy composition nor alloy segregation, which only alter relative intensities and peak shapes. Last, guided by experimental observation [2], we consider stripes of In-rich and In-poor zones : calculated energy variations show a strong tendency for N atoms to completely desert In-poor zones. [References][1][2][3][4][5]

EE10.30
Abstract Withdrawn

EE10.31
Comparison of Lasing Characteristics of GaInNAS Quantum Dot Lasers and GaInNAS Quantum Well Lasers, Chongyang Lin, Soo Fatt Yang and Zhonghe Sun; School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.

Recently, there has been considerable interest in GaInNAS material grown on GaAs substrate, for realizing low-cost, high-performance and high-temperature laser diodes in the 1.3-μm wavelength regime. Both GaInNAS quantum dot (QD) lasers and GaInNAS quantum well (QW) lasers have been realized. This paper reports the comparison of lasing characteristics of GaInNAS QD lasers and GaInNAS QW lasers. GaInNAS/GaAsN self-assembled QD lasers, grown using solid source molecular beam epitaxy (SSMBE), have been fabricated. The GaInNAS QD laser worked under continuous wave (CW) operation at room temperature (RT), with the emission wavelength centered at 1175.86 nm. The GaInNAS QD laser, with the dimension of 50 x 2000 μm2, has a CW, RT threshold current of ∼2.1 A, corresponding to a threshold current density of 0.122 kA/cm2. Light output power of 16 mW/facet was achieved from this device, which corresponds to an external quantum efficiency of 14.6%. From the temperature-dependent light output power versus injection current (I-V) characteristics, the GaInNAS QD laser with the dimension of 50 x 10000μm2 under pulsed measurements, characteristic temperature (T\textsubscript{0}) was estimated to be around 79.4 K in the temperature range of 10 ~ 60 °C. Temperature-dependent F-P characteristics (10 ~ 50 °C) were also obtained from GaInNAS QD laser with the cavity length (L) of 1700 μm. The laser could only work up to 45 °C, and yielded T\textsubscript{0} of 65.1 K. T\textsubscript{0} decreased with increasing cavity length instead of increasing, which is normally observed for the semiconductor lasers. We attributed the observed abnormal phenomena to the nonuniformity of the GaInNAS QD laser structure. GaInNAS single-quantum-well (SQW) and triple-quantum-well (TQW) lasers, grown with metal organic chemical vapor deposition (MOCVD), were also fabricated and characterized. Extremely low threshold current of 15.7 mA was obtained from GaInNAS SQW lasers (4 x 500 μm2), with the emission wavelength at 1247 nm, under RT, CW operation. Temperature-dependent F-P characteristics (20 ~ 80 °C) were obtained from GaInNAS SQW lasers (L=500 μm) and T\textsubscript{0} of 50 μm was estimated from the output power versus injection current (I-V) characteristics. T\textsubscript{0} was estimated to be 62.4 K for the GaInNAS SQW lasers with L=500 μm. In contrast to that of GaInNAS QD lasers, T\textsubscript{0} for the GaInNAS SQW laser with longer cavity length, L=1500 μm, is a little higher, which is 78 K. GaInNAS SQW laser showed stronger temperature dependence of threshold current and presented much lower T\textsubscript{0} than that of GaInNAS TQW lasers, which RT, CW emission wavelength is centered at 1297 nm. For comparison, T\textsubscript{0} of GaInNAS TQW lasers (L=500 μm) is 143.5 K, and 157.2 K for L=500 μm. Our work implies that with the multiple quantum well (MQW) structure, T\textsubscript{0} value of GaInNAS QW lasers could be greatly improved.

EE10.32

GaN:InN alloys have found wide practical applications ranging from local emission wavelength optical semiconductor devices. The model used is Valence Force Field approximation, and we modelize a periodic Ga\textsubscript{1-x}In\textsubscript{x}N\textsubscript{A}As\textsubscript{B} alloy (period up to 32 atomic row) film (typically 24 atomic planes thick) deposited on GaAs substrate. We report to GaAs substrate (Ga:In\textsubscript{0.2}N\textsubscript{0.8} and x=0.025, 0.125, 0.25 and 0.375. The surface is dimerised (for simplicity we consider 2x1 anion rich surfaces). We start from random films and calculate first and second nearest neighbor distances and draw the corresponding spectra, then we allow the system to adopt their optimal location. This pseudo-annealing strongly enhances the number of In-N bonds, in agreement to experimental studies [3]. For each distance one can check the local chemical arrangement, and from this statistical study, show that fine structure of each peak of the spectra cannot be directly related to a given chemical distribution up to 3rd nearest neighbors. The position of the peaks appear not to be modified by alloy composition nor alloy segregation, which only alter relative intensities and peak shapes. Last, guided by experimental observation [2], we consider stripes of In-rich and In-poor zones : calculated energy variations show a strong tendency for N atoms to completely desert In-poor zones. [References][1][2][3][4][5]

EE10.33
Pulsed Modulated GaAs/GaInAs/GaInAs Quantum Wells for Solar Cell Applications, Naoto Kobayashi, Naoyuki Sasaki and Yoshitaka Okada; Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Recently, multi-quantum well (MQW) solar cells have attracted an increasing interest for achieving higher efficiency photovoltaic and solar energy conversion. The fundamental principle is such that a MQW, which is introduced in the intrinsic region of p-n or p-i-n solar cells, under bandgap [barrier] material, can be used to increase the photoabsorption in the energy region below the absorption edge of host material. However, the superior performance of MQW solar cells can only be expected if the escape rate of photogenerated carriers out of QWs is kept sufficiently high and minimizing the radiative losses within QWs. Previously, we have shown that compared to a conventional square-shaped GaAs/GaInAs MQW solar cell, the carriers escape out of QWs more efficiently in multi-step potentially modulated structures resulting in better photovoltaic performance. However, due to the large lattice-mismatch with GaAs, In content in GaInAs QW cannot be increased to more than ∼ 20%, or otherwise, dislocations would be generated and recombination loss would increase dramatically. In this work, the photovoltaic performance of GaAs/GaInAs/GaInAs MQW solar cells were investigated. The purpose of introducing GaNAs material is of two-fold; One is that GaNAs would induce a tensile strain that can increase the compressive strain induced by GaInAs, which thus adds a degree of freedom in optimizing the MQW structure. The other is GaNAs/GaInAs interface could become a type-II interface by adjusting the N to In composition, which would facilitate spatial separation of electrons and hole wavefunctions leading to suppressed recombination losses. For this purpose, we have fabricated various 10-period GaAs(50nm)/GaNAs/GaInAs MQWs introduced into the intrinsic region of GaAs p-i-n solar cells by atomic H-assisted RF-molecular beam epitaxy. We show, for the first time, that GaAs/GaNAs/GaInAs MQW solar cells exhibit improved external quantum efficiencies in the low energy region (880~1000 nm) compared to the conventional GaAs(50nm)/GaInAs(10nm) MQW cells.

EE10.34
Evidence of two different mechanisms at the origin of the blue shift after annealing of GaInNAs QW, Maxime Hughes, Benjamin Damilano, Jean-Michel Chauveau, Jean-Yves Duboz and Jean Massies; Centre de Recherche sur l’Hetero-Epitaxie et ses Applications, Centre National de la Recherche Scientifique, 06560 Sophia Antipolis, France.

The incorporation of small amount of nitrogen in InGaAs/GaAs results in a band-gap reduction which opens the way to the realization of new lasers on GaAs substrates. However, the radiative properties, of GaNAs (GINA) quantum wells (QW) is strongly degraded due to the incorporation of nitrogen. Post-growth annealing are required to improve the photoluminescence (PL) properties but unfortunately the energy shifts towards shorter wavelengths. This PL is generally attributed to two different mechanisms: In-Ga or As-N.
interdiffusion, and atomic reorganization of the N-neighborhood. It has been reported that interdiffusion processes in InGaAs QWs induce PL emission bands of meV width in the annealing temperature (AT). However, in the case of GINa QWs, it is generally found that the annealing does not induce interdiffusion. Also, it has been shown theoretically and experimentally that low-temperature

which indicates evidence of “inverted s-shaped” behavior in the low-temperature regime. The composition of the grown structure is investigated by high resolution electron microscope (HREM) and secondary ion mass spectrometry (SIMS) analysis. The N and Sh compositions in these layers have been estimated to be around 3 ppm and 7 ppm, respectively, from HRXRD and SIMS measurements. The 10K PL peak energy of InAs with a FWHM of 18 meV has been achieved on ex situ annealed samples in N ambient. The layers are found to be fully strained as evidenced by the presence of high frequency fringes on the x-ray diffraction spectra. Raman spectroscopy analysis has also been carried out on both as grown and annealed samples to determine the local bonding of various elements.

EE10.37
White-light Emitting ZnO-SiO2 Nanocomposite Thin Films Prepared by Sputtering Method, Yeun-Yung Peng1; Tzung-Eong Hsieh1 and Chia-Hung Hsu2; 1Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan; 2Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan.

ZnO-SiO2 nanocomposite thin films were prepared using RF sputtering method without substrate heating. The PL measurements show that the ZnO nanoparticles embedded in the SiO2 matrix emit white-light consisting of violet, blue, and green-yellow band emissions. The presence of the blue emission was attributed to the large amount of ZnO/SiO2 interfaces, which enlarges the depletion layer width and then enhances the related transition. The results of the Gaussian curve fitting revealed the competition between the blue and green-yellow band emissions and the relative emission intensity is strongly associated with the amount of ZnO nanoparticles embedded in the SiO2 matrix. Further analyses indicated that the defect structure of samples could be manipulated by the amount and distribution of ZnO nanoparticles in SiO2 matrix to yield distinct luminescence spectrum.

EE10.35

Both p-type and n-type dilute-nitrogen GaNAs epilayers formed by metal-organic chemical-vapor deposition were characterized by deep-level transient spectroscopy (DLTS). For each case, the dominant DLTS signal corresponded to an electron trap having an activation energy of about 0.25 eV for p-type GaNAs and about 0.35 eV for n-type GaNAs. In p-type GaNAs, the electron traps fill slowly, as the DLTS signal reaches saturation using zero-bias filling pulses with widths on the order of 1 to 10 seconds. The long filling times correspond to the potential barrier that electrons must surmount at low temperature in order to fill traps in the p-type region by traveling from the p-n-type boundary. When applying a range of filling-pulse widths, the activation energy tends to decrease from about 0.3 eV for short filling-pulses to about 0.2 eV for longer filling-pulses. The trap density is proportional to nitrogen content for these dilute-nitrogen samples. In n-type GaNAs, the electron-trap density is also proportional to nitrogen content. For constant nitrogen content, the electron-trap density increases with increasing n-type doping. The electron traps fill quickly in the n-type GaNAs, as the DLTS signal approaches saturation in microseconds. The capture cross-sections determined by the DLTS Arrhenius plots are typically about 10^-12 to 10^-12 cm^2. The electron-trap densities range from 10^15 to 10^16 cm^-3 in mid-25 cm^-3 n-type-doped GaNAs having a bandgap of 1.35 to 1.4 eV. These trap parameters give an estimated carrier lifetime of 1 ns or substantially shorter.

EE10.36
Growth and Properties of Lattice Matched GaAs:Sn Epilayer on GaAs for Solar Cell Applications. Sudhakar K. Bharatav1, Shanthi Iyer1, Kalyan Nutana1, Ward J. Collins1, Jia Li1, Liangjun Wu1 and Kristopher McGuire1; 1Electrical Engineering, North Carolina A&T State University, Greensboro, North Carolina; 2Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina.

In this work, the growth and characterization of 1.0 µm thick GaAs:Sn bulk layers nearly lattice matched to GaAs, grown in an elemental solid source molecular beam epitaxy (MBE) system with a RF plasma nitrogen etch, is discussed. The substrate temperature in the range of 475°C is found to be optimum. These layers exhibit significant improvement in photoluminescence (PL) properties following annealing, either in ex situ in N ambient or in situ under As overpressure. Effects of in situ and ex situ annealing for different time on the PL peak energy and PL intensity are also discussed. The PL temperature dependence studies are also carried out on these samples sessions EE11.1 Dilute Nitride and Bismide Semiconductors. Chairs: Satyen Deb and Angelo Mascarenhas Thursday Morning, December 1, 2005 Constitution B (Sheraton)

8:00 AM EE11.1

The ability to probe single, isolated and spatially resolved entities permits the observation of their intrinsic, singular, and hidden properties otherwise masked by ensemble averaging. This has led to remarkable progress in the understanding of single atoms, molecules, defects, quantum dots, and carbon nanostructures. Until now, little progress has been done in the field of single impurities in a semiconductor material. We report on the fine structure luminescence from a single impurity center in a semiconductor. The host is GaAs and the impurity corresponds to two nitrogen atoms forming a pair. The selective study of a single nitrogen pair using high resolution spectroscopy and characteristics and allows the analysis of 1) its symmetry and its effects on the fine structure of the luminescence, 2) the spatial and orientation distribution of pairs, 3) the effects of the environment on its characteristics, and 4) the renormalization of its energy due to many-body effects. We find that the limitations imposed by ensemble averaging provides an unprecedented perspective on the nanoscale of impurities. These findings help reconsider the traditional role of impurities and open up many possibilities for technological applications.

8:30 AM EE11.2
Nitrogen Incorporation and Magneto-optical Studies of GaAs/Si/GaAs Single Quantum Well Structures. Kalyan Nunnana, Shanthi Iyer, Liangjun Wu, Sudhakar Bharatav, Jia Li, Ward J. Collins, Krishan Bajaj, Tugral Senger and Xing Wei; 1Electrical and Computer Engineering, North Carolina A&T State University, Greensboro, North Carolina; 2Physics, Emory University, Atlanta, Georgia; 3Physics, Bilkent University, Ankara, Turkey; 4NHMFL, Florida State University, Tallahassee, Florida.

A systematic study has been carried out on GaAs/Si/GaAs Single Quantum Well (SQW) structures with different N concentrations grown at 470°C in an elemental solid source EPI 930 molecular beam epitaxy (MBE) system using a RF plasma assisted nitrogen source operating at 200W. The nitrogen QW samples were in-situ annealed in As ambient at 650°C for 10 minutes. The compositions of these alloys were determined using a combination of secondary ion mass spectroscopy and high-resolution x-ray diffraction measurements. Low
10k PL peak energy of 0.78 eV with low FWHM of 28 meV was achieved on SQWs for N concentration of 1.4x10^17/cm^2. The optimum range of N fluxes based on low PL energy and FWHM was found to be 2-7x10^17/cm^2. Magnetic measurement properties of these differently strained SQW structures of various N concentrations were also investigated in this work. The variations of the diamagnetic shifts in the GaAsN/GaAs system as a function of magnetic field were measured up to 32 T at 1.3K. The diamagnetic shifts observed were in the range of 11-15 meV, for a change in the magnetic field by 32T. These values are considerably larger than those reported in similar QW structures by Sengier et al. [1]. Calculations have been performed using models based on both free and localized excitons using variational approaches for quantitative explanation of our data. Our preliminary analysis seems to indicate that GaAsSbN/GaAs system is a good choice as a material system in the EU. These studies allow us to determine the values of various parameters such as effective masses of electrons and holes in these structures. The details of these investigations along with our observed differences in the values of the diamagnetic shifts from those reported in literature will be presented. Supported by Army Research Office (Grant No. W911NF-04-1-0005), and NASA (Grant No. NAG3-2782). Reference [1] Senger, R. T., et al., Appl. Phys. Lett. 83, 5425-5427 (2003).

8:45 AM EE11.3
Electronic Properties of (In)GaAsN/GaAs(001) Heterostructures: Analysis of the E_2 Transition and the Effect of In Absorption
Shin'ya H. Tsutsumi,1,2,3, Jean-Nicolas Beugniot1,2,3, Ghalene Bentuami1,2,3, René A. Mostert1,4, Richard Leonelli5,3, and Patrick Desjardins1,3; 1Physics, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada; 2Physics Department, Universite de Montreal, Montreal, Quebec, Canada; 3Groupe de Recherche Quebecois sur le Matériaux de Pointe, Montreal, Quebec, Canada; 4Instituto de Ciencia de Materiales de Madrid, Madrid, Spain.

Dilute semiconductor nitride heterostructures present unusual electronic properties related to the well known splitting of their lowest conduction band into E_2 and E_1 sub-bands whose present origin is still a subject of debate. In particular, In_0.5Ga_0.5As(1-2x)N_x is an appealing candidate for applications such as photovoltaic cells and telecommunication lasers as it can be grown lattice-matched to GaAs. Using a combination of optical spectroscopy techniques and tight-binding electronic structure calculations, we have studied a series of single quantum wells (SQW) of In_0.5Ga_0.5As(001) as well as In_0.5Ga_0.5As(1-2x)N_x single layers nearly lattice-matched (mismatch below 0.1%) to GaAs(001) substrates (y ~ 3X) grown by organometallic vapor phase epitaxy. Variable angle spectroscopic ellipsometry spectra from these alloys are characterized by an extra feature compared to typical GaAs data that can be clearly assigned as the E_2 transition. Using the layer thickness precisely determined by high resolution X-ray diffraction measurements, we obtain the absorption edge near threshold below the absorption edge. We find that the values of a near the absorption edge for the GaAsN layers are slightly lower than those for the corresponding InGaAsN layers at a given nitrogen fraction. Since a values for the GaN nitrides are close to the known value of a for GaAs (~10^1 cm^-1), we conclude that the E_2 transition cannot be adequately explained by considering only two interacting conduction bands close to the Fermi level. Rather, contributions from the whole Brillouin zone are included to explain this transition. The results also suggest that incorporation of indium affects only slightly the band structure of the dilute nitride. The difference in the experimental values for absorption edges between GaAsN(1-x)N_x and In_0.5Ga_0.5As(1-2x)N_x layers with the same nitrogen content increases up to 80 meV for (y = 0.042). By taking into account the effect of strain in GaAsN(1-2x)N_x, we deduce that this value is close to the calculated difference between the band gaps of In_0.5Ga_0.5As and GaAs which is near 60 meV (y = 0.042). This also confirms that the effect of indium on the conduction band states can be separated.1 Turcotte et al., J.Vac. Sci. Technol. A 22, 776 (2004). 2 Shin'ya et al., Phys. Rev. B 67, 081202R (2003).

9:00 AM EE11.4
Abstract Withdrawn

9:15 AM EE11.5
Optical Properties of GaAsN Quantum Structures.
Ting Liu1, Sandeep Chandrilli2, Thomas H. Myers3 and Dimitris Korakas2; 1Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia; 2Department of Physics, West Virginia University, Morgantown, West Virginia.

GaAsN has attracted a lot of interest because of its long wavelength application in optoelectronic devices. To date, most quantum dots (QD) studies of InAs/GaAs QD systems have involved InAs QD’s with an InAs/GaAs(001) overlay to reduce strain. We have developed GaAsN quantum dot-like structures grown on (100) GaAs substrates by Molecular Beam Epitaxy. Atomic force microscopy (AFM), photoluminescence (PL), Auger Electron Spectroscopy (AES) and Scanning Electron Microscopy (SEM) are used to study how the structure of GaAsN and nitrogen composition influence the optical properties of these QD. The standard deviation of the quantum dot size is correlated with the full-width-half-maximum (FWHM) of the PL. Nitrogen content plays an important role on the properties of the GaAsN. By varying the flow rate of the RF-nitrogen plasma, we also investigated the influence of nitrogen. AES was used to estimate the nitrogen content. The dot dimensions as related to the nitrogen content were demonstrated. Our study will also show the effect of nitrogen composition on the wavelength. Too little or too much nitrogen all lead to a blue shift of the wavelength because too much nitrogen contributes to the deterioration of the quality of the sample. This work is supported by NSF 0102753.

9:30 AM EE11.6
GaNAsBi Semiconductor Alloy with Temperature-Insensitive Bandgap. Masahiro Yoshimoto, Wei Huang, Gan Feng and Kunishige Oe: Kyoto Institute of Technology, Kyoto, Japan.

The authors have been investigating Bi-containing semiconductor alloys with a new semiconductor with a temperature-insensitive bandgap. Recently, a new semiconductor alloy GaNAs1-xBi_x has been successfully grown by molecular beam epitaxy (MBE). The GaNAs1-xBi_x layers were grown lattice-matched to GaAs emitted room-temperature photoluminescence (PL) at an infrared region including wavelength for optical fiber communication. Since the temperature coefficient of the PL peak-energy was measured to be much smaller than that of InGaAsP, GaNAs1-xBi_x is suitable to realize a new semiconductor laser diode with a temperature-insensitive wavelength for optical fiber communication light sources. The new laser diode will eliminate the use of temperature-control equipment in wavelength-division-multiplexing (WDM) fiber communication systems. In this paper, growth and photoluminescence (PL) characteristics of GaNAs1-xBi_x are reported. Growth conditions to achieve Bi incorporation into the epilayer and a related growth mechanism are discussed. Effects of Bi and N incorporation on PL peak energy and its temperature coefficient of GaNAs1-xBi_x are discussed quantitatively. GaNAs1-xBi_x was grown on (001)-oriented GaAs substrate in MBE with solid sources of Ga, As and Bi. Activated nitrogen generated from N_2 gas in rf plasma was used as the nitrogen source. GaNAs1-xBi_x layer was grown at substrate temperature in the range between 350 and 380 °C. The GaBi and GaN molar fractions were evaluated by Rutherford back scattering (RBS) measurements and secondary ion mass spectroscopy (SIMS), respectively. The lattice-matching of GaNAs1-xBi_x to GaAs was confirmed by X-ray diffraction measurements on a series of GaNAs1-xBi_x with various GaBi and GaN molar fractions. The alloy was found to be lattice-matched to GaAs in the form of Ga(N0.33Bi0.67)As0.5. The GaNAs1-xBi_x layer grown lattice matched PL at room temperature. Its PL peak energy shifted to a longer wavelength with increasing GaBi and GaN molar fractions with the red shift coefficients of ~62 meV/%,Bi and ~130 meV/%N, respectively. The temperature dependence of the PL peak energy of GaNAs1-xBi_x in the temperature range of 150-300K was also included to explain the crossover transition. The results also suggest that incorporation of indium effects only slightly the band structure of the dilute nitride. The difference in the experimental values for absorption edges between GaNAs1-xBi_x and In0.5Ga0.5As(1-2x)N_x layers with the same nitrogen content increases up to 80 meV for (x = 0.042). By taking into account the effect of strain in GaNAs1-xBi_x, we deduce that this value is close to the calculated difference between the band gaps of In0.5Ga0.5As and GaAs which is near 60 meV (x = 0.042). This also confirms that the effect of indium on the conduction band states can be separated.1 Turcotte et al., J.Vac. Sci. Technol. A 22, 776 (2004). 2 Shin'ya et al., Phys. Rev. B 67, 081202R (2003).

10:30 AM EE11.7
GaNAsSb Long Wavelength Lasers, Solar Cells and Photonic Integration. James S. Harris, Solid State and Photonics Lab, Stanford University, Stanford, California.

The incredible growth of the Internet and data communications is pushing the bandwidth requirements for fiber networks and expansion of fiber-to-the-home and local area networks at an unprecedented rate. Current optical fiber lasers which are easily packaged and coupled to fiber are needed for the next generation of these networks. Fiber Raman and semiconductor optical amplifiers which expand the bandwidth across the entire low-loss region are also required. GaNAsSb is a promising new active material layer that can be grown on GaAs to achieve 1300-1600nm emission for both high speed, low cost VCSELs, SOAs and high power Raman pump lasers. The successful development of GaNAsSb has also attracted attention of researchers as solar cells because the highest efficiency cells are currently stacked cells on Ge, but there was previously no lattice matched 1.0 eV alloy to Ge.
This materials system provides many epitaxial growth challenges as the equilibrium phases of the constituent binary alloys are cubic (GaAs and InAs) and tetragonal (GaInAs) material with easy phase segregates with increasing N and In compositions. In addition to the growth challenges, GaInNAs(Sb) is different from other III-V alloys in that its bandgap decreases with a decrease in lattice constant such that it exhibits an interesting narrower bandgap and material with high-temperature and power capabilities for GaInNAs(Sb) lasers. We have achieved record low threshold current density in 1500nm edge emitting lasers and the first monolithic 1450nm VCSEL on GaAs. In addition to the laser performance, this alloy is enabling integration of higher efficiency, multi-bandgap stacked junction solar cells and photonic crystal structures for waveguide, high Q cavities and other passive components that will be crucial for increased levels of integration into photonic circuits. The recent progress in both materials and devices will be described.

11:00 AM EE11.8
MBE Growth and Optoelectronic Properties of Dilute GaNAsxSb1−xBi, Alloys. Erin C. Young4, Sebastien Tixier2, Thomas Tiedje2,3, Scott Webster2, Dan Beaton3, Nikolaj R. Zangenberg2, Sebastien Francouer4, Angelo Mascarenhas2, Peng Wei4, and Francois Schietekatte2.
1Materials Engineering, University of British Columbia, Vancouver, British Columbia, Canada;
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada;
3Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada;
4National Renewable Energy Laboratory, Golden, Colorado;
5Department de Physique, Universite de Montreal, Montreal, Quebec, Canada.

Isoelectronic co-doping of GaAs with N and Bi has been proposed as a way to alleviate the degradation in electronic properties associated with nitrogen in the dilute alloy GaNAs [1]. In addition co-doping with N and Bi allows bandgaps in the near infrared (1.0 - 1.5 μm) with relatively small N concentrations as compared to the GaNAs alloys [2] due to the giant bandgap bowing effect associated with Bi (64 meV% Bi). A giant bowing in the spin orbit splitting has also been observed recently in GaNBi [3]. We have grown GaAsxBix and GaNAsxSb1−xBi, films by plasma-assisted, solid source molecular beam epitaxy with Bi and N concentrations up to x = 3.1% and y = 1.6%, as determined by Rutherford backscattering and high-resolution x-ray diffraction. The extent of Bi incorporation into GaAs is highly sensitive to the growth conditions, and requires both a low growth temperature (<400°C) and an As to Ga flux ratio on the order of 1. At the standard growth temperatures and As overpressures used in GaAs growth, Bi does not incorporate (< 2x10¹⁷/cm³). Instead it surface segregates and acts as a surfactant. The presence of the Bi surfactant enhances the N incorporation efficiency in GaNAsxBix by up to 50%, increasing the photoluminescence intensity and reducing the temperature PL linewidth. Despite the non-standard growth conditions necessary for Bi incorporation, strong room temperature photoluminescence is observed for the GaAsxBix and GaNAsxSb1−xBi films, with emission at 1280 nm for GaAsxBix and 1320 nm for GaNAsxBix (x = 0.85%, y = 1.4%). In this paper we investigate the relationship between growth parameters, Bi incorporation and optoelectronic properties of dilute bismide and nitride-bismides alloys using photoluminescence and electroreflectance. 1. A. Mascarenhas et al., Superlattices and Microstructures 29 (2001) 395, 2. S. Tixier et al., Appl. Phys. Lett. 86 (2005). 3. S. Yoon, M.J. Seoug, B. Fluegel, S. Francouer, A. Mascarenhas, S. Tixier and T. Tiedje (to be published).

11:15 AM EE11.9
Interdiffused SbN-based Quantum Well on GaAs for 1300-nm Lasing. Ronald Tansu, Interdiffusion Lab, Center for Optical Technologies, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania.

Though InGaAsSb quantum well (QW) grown by molecular beam epitaxy (MBE) on GaAs have resulted in low threshold laser devices, the pursuit of InGaAsSb material systems by metalorganic chemical vapor deposition (MOCVD) is still challenging. Here we propose a novel approach to grow InGaAsSb QWs by interdiffusion. We introduce the use of InGaAsSb interdiffusion to circumvent the challenges present in the MOCVD growth of this quinary compound. Our novel approach combines the already-established MOCVD growth technique of InGaAsSb and InAsGaSb QWs, with post-growth rapid thermal annealing (RTA) that leads to interdiffusion of Sb and N species, resulting in high quality interdiffused InGaAsSbQW. The initial step involves the MOCVD growth of the active region consisting of InGaAsSb and InAsGaSb QW layers where the former is sandwiched by the latter. As the InGaAsSb and InAsGaSb QWs are grown in separate layers, optimization of their individual MOCVD growth parameters can be achieved independently. By conducting post-growth RTA, the Sb-N interdiffusion process is turned on and the material is transformed into a quinary quinary system. The large disparity of the Sb-N diffusion constants (at annealing temperature of 900°C, the diffusion constant of N-species in GaAs matrix is approximately 150 times than that of Sb-species). We have conducted numerical and experimental work to investigate the interdiffused InGaAsSbQW for achieving emission wavelength up to 1550-nm regime. Numerical studies indicate emission wavelength up to 1500-nm is achievable by interdiffused InGaAsSbQW with the as-grown 3-mm In0.4Ga0.6As0.5Sb0.5QW sandwiched by 2.5-nm In0.4Ga0.6As with 37% Sb layers at a temperature of 600°C for 30 sec. Strain compensated interdiffused SbN-based QW on GaAs can also be achieved by annealing adding a 20sec 1000°C anneal consisting of 2.5-mm GaAs0.95Sb0.05 QW sandwiched by 6-mm In0.43 Ga0.57As0.5Sb0.5 QW layers, resulting in interdiffused InGaAsSbQW with emission wavelength up to 1000-nm. Experiments investigating the interdiffused InGaAsSbQW on GaAs matrix and measurements on the fundamental Sb-N diffusion phenomena in GaAs matrix. Annealing of MOCVD-grown 2.5-nm GaAs0.7Sb0.3 QW sandwiched by GaAs barriers at 700°C for 100 sec leads to minimal PL blueshift of only ~0.6 nm. In contrast to that, under similar annealing condition (at 700°C for 100 sec) a much larger blueshift of ~132 nm is observed for the sample consisting of MOCVD-grown 7.5-nm GaAs0.95Sb0.05 QW surrounded by GaAs barriers. These findings indicate the low diffusivity of Sb-species and high diffusivity of N-species in GaAs matrix, in agreement with theory. This finding also provides an indication of the feasibility of the interdiffused SbN-based QW. Experiments on strain-compensated GaSb0.3GaAs0.7 QW and GaAs0.95Sb0.05 QWs on GaAs will also be conducted to investigate the interdiffused InGaAsSbQW structure for 1300-1550 nm laser active regions.

11:30 AM EE11.10
Growth and Characterization of InGaAsN Quantum Alloys for the Fabrication of Long Wavelength MSM Photodetectors on GaAs Substrates. Eric Daniel Higgins, Julian Noad, Francess Gouin and Dave Coulas; Optoelectronic Materials and Components, Communications Research Centre, Ottawa, Ontario, Canada.

Dilute nitride III-V materials such as GaNAs and InGaAsN have been the focus of much theoretical and experimental research activity over the last few years. Grown on large-area GaAs substrates, they are ideal candidates for the fabrication of integrated optoelectronic devices that could be monolithically integrated with MSM photodetectors. SEM, transmission electron microscopy (TEM), high-resolution X-Ray diffraction (HRXRD), photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy, measurements were used to confirm material quality and lattice matched heterostructures. Dilute nitrides grown by metalorganic chemical vapour deposition (MOCVD) are presented. Through careful control of the trimethylindium (TMIn), dimethylhydrazine (DMHy), trimethylgallium (TMGa) and Arsine (AsH3) precursors, lattice matching conditions were achieved for layered growing approximately 3% nitrogen and 11% indium with bandgap wavelengths to 1.3 μm. Nomarski optical microscopy and double crystal x-ray diffraction (XRD) measurements have been used to confirm material quality and lattice matched heterostructures. Room temperature (10K) photoluminescence scans were performed. It was found that there was little or no PL from as-grown layers; alloy activation through rapid thermal annealing was required to obtain observable photoluminescence peaks. Similarly, Hall measurements on the thick layers also required activation to show average carrier concentrations of 5.5x10¹⁷ cm⁻³ and mobility of 50 cm²/Vs. The DC and frequency response performance characteristics of Metal-Semiconductor-Metal (MSM) photodetectors fabricated on both as-grown and annealed InGaAsN materials are examined and compared to similar structures fabricated using GaAs and InGaAs/InP epitaxial materials.

11:45 AM EE11.11
Impurity and perturbed host states in III-V semiconductors containing N and Bi1,2, Yong Zhang1, Angelo Mascarenhas1 and Lin-Wang Wang2; 1National Renewable Energy Lab, Golden, Colorado; 2Lawrence Berkeley National Laboratory, Berkeley, California.

It is well-known that N or Bi doing in III-V semiconductors may generate a number of impurity states and lead to profound modifications of the band structure. We have performed electronic structure calculations for both III-N and III-Bi, using first-principles pseudopotential based charge patching techniques[1-3]. We will address the following issues: (1) How accurately can the

SESSION EE12: Advanced Dielectrics and Si-Based Materials
Chair: Matthew Erdtmann Thursday Afternoon, December 1, 2005 Constitution B (Sheraton)

1:30 PM EE12.1
The Microstructures at the Interfaces of LaSrO3 / Si, Pds-Ln [1, Lisa Edge2, Darrell G. Schlom3 and Gerd Duescher1,2,3]; Department of Materials Science and Engineering, NC State University, Raleigh, North Carolina; 2Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania; 3Condensed Matter Division, Oak Ridge National Lab, Oak Ridge, Tennessee.

Aggressive down scaling of CMOS devices requires the introduction of new and alternative insulation materials to replace SiO2. The extremely high dielectric constant of Perovskite-type metal oxides (ABO3) makes them an obvious candidate. A good interface for this application requires either that the ABO3 is amorphous, or that it is single-crystalline with a low density of dangling bonds between it and the silicon substrate. Amorphous ABO3 is expected to be able to adjust its local bonding and reduce the silicon dangling bonds at the interface. However, these ionic materials must be kept amorphous even after post-deposition high-temperature processing in order to maintain a sharp interface and avoid deleterious leakage along grain boundaries. In this study, Z-contrast imaging, EELS and HRTEM have been applied to study the interfaces of the LaSrO3/Si system. Without heat treatment, LaSrO3 thin film is amorphous and the interface between it and underlying silicon is sharp. Heat treatment above 700 degree C resulted in recrystallization of the LaSrO3. Additionally, all samples showed an amorphous intermediate layer, which is La deficient as verified by EELS results. There is only a trace of silicon oxygen bonding present at the interface of this La deficient layer and the crystalline Si. The amount of this oxide bonds is consistent with a monolayer of Si atoms bonded to the intermediate oxide layer. We conclude on an atomistically sharp interface with an intermediate layer having lower dielectric constant than pure silica. Keywords: High dielectric constant; Perovskite; Interface; Z-contrast imaging; EELS; HRTEM. This work has been funded by the National Science Foundation under contract number DMR-0121136 and the U.S. Department of Energy under contract number DE-AC05-00OR22725.

1:45 PM EE12.2
Deposit nitrided HfO2 films in O2 or N2O. Qian Luo, William Rees and Dennis Hess; Georgia Institute of Technology, Atlanta, Georgia.

Nitrided HfO2 films are deposited by direct liquid injection chemical vapor deposition (CVD) using O2 or N2O as oxidants. Deposition kinetics, phase, chemical composition, bonding, and dielectric properties of the films obtained from the two different oxidants are compared. Depositions in nitrous oxide display an activation energy (9.9 kcal/mol) less than that observed with oxygen (13.6 kcal). Films obtained from nitrous oxide are amorphous as determined by Grazing Incidence X-ray diffraction (GIXD), while films deposited using oxygen are mixtures of amorphous and crystalline phases. Films deposited from nitrous oxide have lower bulk and interface (with silicon) nitrogen concentrations relative to films deposited in oxygen. The amorphous structure of nitrous oxide deposited films and an enhanced concentration of oxygen atoms from nitrous oxide are both likely to be the reasons for the reduced interface nitrogen concentrations. Capacitance - voltage (C-V) measurements demonstrate that films deposited with nitrous oxide have lower dielectric constants and lower interface trap densities relative to films deposited from oxygen. Leakage currents of the films deposited in nitrous oxide are smaller than those of films deposited in oxygen. Nitrogen concentration at the film/silicon substrate interface is appear to be the reason for the distinct electrical properties of films deposited using the two oxidants.

2:00 PM EE12.3
Direct detection of electrons with wide energy range using a fully-depleted delta-doped high purity silicon p-n diode array. Shouleh Nikzad1, Thomas J. Cunningham1, Ronald P. Ruiz1, David M. Sontes2 and Greg J. Prebil, Lawrence Berkeley National Laboratory, Pasadena, California; 2Lawrence Berkeley National Laboratory, Berkeley, California.

Direct detection of electrons in the 0.1 keV to 20 keV energy range has been demonstrated using a fully-doped high purity silicon p-n diode array. Full depletion of high purity detectors allows the detection of all electrons and allows the determination of device gain as a function of the incident energy, as well as a measurement of silicon quantum yield at low energies. We have developed a low-temperature process for forming highly thin electrodes on the p-type substrate of fully depleted fully fabricated high purity silicon pin diode arrays. This electrode is tuned to shallow-penetrating ionizing radiation. The electrode is formed by growth of a boron delta layer using molecular beam epitaxy on the back surface of the fully processed device. In this talk, we will discuss the device structure, processing, and characterization methods used to demonstrate the direct detection of low-energy electrons.

2:15 PM EE12.4
Ultra-low temperature growth of Antimony delta-doped Silicon on high-purity Imaging Detectors. Jordana Blackberg1, Michael Hoeken1, Shouleh Nikzad1, David McVittie2, Caltech Jet Propulsion Laboratory, Pasadena, California; 2Lawrence Berkeley National Laboratory, Berkeley, California.

We have developed a low temperature process for Sb delta-doping of silicon which can be used to form a thin back-surface contact for back-illuminated high purity n-type imaging detectors. Nerveillium growth epitaxy (NVE) is used to achieve very high dopant incorporation in a thin, surface-confined layer. Optimization of this process has enabled the growth of a delta-layer with >1019 cm−2 antimony. The temperature is kept below 450 °C throughout the entire process, which is required for compatibility with fully processed and functional Al-metallized devices. High purity silicon detector arrays, under development at LBNL, are very sensitive to light and will benefit from a thickness of few hundred microns with the application of a modest voltage. Full depletion enables high-resolution imaging, while greater device thickness extends the spectral response farther into the infrared (i.e., 200 μm thick devices can detect wavelengths up to ~1 μm limited by low absorption near the silicon bandgap). However, full depletion also makes these devices particularly susceptible to surface effects. Surface states at the back surface of an unpassivated, fully-depleted device cause an unacceptable high leakage current. The back electrode of high purity devices must therefore perform a dual function. It must provide a conductive back electrode, and it must passivate the surface to prevent excessive dark current. In addition to performing these functions, a high-performance rear layer will have the additional benefit of having a high transparency to shallow-penetrating radiation, which results in a significantly higher detection efficiency compared to the relatively thick electrodes fabricated by conventional processes. For example, delta-doped CCDs detect UV photons and low energy particles with high efficiency, despite the fact that most of the absorption takes place within a few nanometers of the silicon surface. We have applied our process to high purity n-type p-i-n photodiode arrays and Charge Coupled Devices (CCDs), and have successfully imaged with MBE-modified CCDs biased above full depletion. Dark current is shown to be as low as other state-of-the art processes indicating excellent surface quality. We will discuss the effects of growth conditions on the leakage properties of these detectors. We will report on our most recent quantum efficiency measurements with the delta layer placed at various distances from the back of the CCD. These results show that quantum efficiency increases (especially in the near infrared) as the Sb-doped layer is placed closer to the back surface.

2:30 PM EE12.5
Optimization of SiGe Graded Buffer Defectivity and Throughput by Means of High Growth Temperature and Pre-Threaded Substrates. Matthew Erdtmann1, Matthew T. Currie1, Joseph C. Woicik2 and David Black2; 1AmberWave Systems Corporation, Salem, New Hampshire; 2National Institute of Standards and Technology, Gaithersburg, Maryland.

The SiGe relaxed graded buffer allows for the realization of strained Si, strained Si on insulator (SOI), and monolithic integration of optoelectronics on Si. To be inserted into production, it must be both low-defectivity and economical. For the former, a reduction of the threading dislocation density (TDD) to tolerable levels and an elimination of dislocation pile-ups are needed. For the latter, the
graded buffer thickness and growth time must be minimized, so that the throughput approaches that of Si homoepitaxial wafers. To date these heterogeneous, mutually independent, since the diffusivity of a graded buffer is inversely dependent on growth rate and grade rate. In this work, we employ GeCl₄ to grow at temperatures above 1000°C where extremely high dislocation glide velocities are available. First, SiGe graded buffer grown with growth rate of prime Si substrates. Etch pit density measurements exhibited a mild sensitivity of the TDD and dislocation pile-up density (DPD) to the grade rate, but a complete independence to the growth rate.

We show that the high-grade buffer is H-bonded to the low-grade TDD, the growth rate can be increased radically to improve the graded buffer throughput, Second, single SiGe layers with varying relaxation on pre-stressed Si substrates and pre-stressed Si substrates. (TDD = 5 × 10⁴ cm⁻² for a 2% Ge/µm grade at 2×10⁻³ cm⁻² for a 50% Ge/µm grade and DPD ~ 10⁻³ cm⁻². Not only can this work abet the realization of SIe-based applications, including strained Si and SSOI, but it can be readily applied to other material systems as well.

3:15 PM EE12.6
Low-energy Electron Microscopy Investigations of Elastically Strained Silicon/Germanium Nano-Membranes
Chanan Ewansukal, Michelle M. Roberts, Donald E. Savage and Max G. Lagally; Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin.

We have developed a process to fabricate free-standing membranes made of layers of Si and SiGe that are elastically strained relaxed, so that we can in principle make strained Si without dislocations or threading defects. Such materials could be superior for high-speed semiconductor devices. Membranes are made by chemical vapor deposition (CVD) of SiGe alloy and Si layers on silicon-on-insulator (SOI) substrates, and dislocations are present within the membranes. The formation of dislocations is kinetically limited by the growth temperature during CVD. After the films are released from SOI substrates and form elastic strain sharing structures, [1] no new dislocations are created. In this study, we use transmission electron microscopy (TEM) to observe real time dislocations in membranes before and during thermal annealing. The results show that, after the thermal annealing, the density of dislocations on released membranes is substantially lower than on identical film structures grown on SOI substrates but not released. The results demonstrate that the dislocation-free membranes are thermodynamically stable, confirming the conclusions previously drawn from x-ray diffraction [1] but extending them to much lower dislocation densities. [1] M. M. Roberts, D. E. Savage, and M. G. Lagally, submitted. Research supported by NSF, DOE, and AFOSR.

3:30 PM EE12.7
Frenkel-Dykh Effect in Strained Ge on Si for Light Modulation
Samerkhae Jonghammanarak, Jifeng Liu, Douglas Cannon, David Danielson, Ching-yin Hong, Dong Pan, Kazumi Wada, Jeff Stieh, Alistair McDonald, Akira Kataura, and Shiro Kitagawa; Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; 2 Materials Engineering, The University of Tokyo, Tokyo, Japan.

Silicon-based modulators are important building blocks for complementary-metal-oxide-semiconductor (CMOS) compatible optoelectronics integrated circuits (OEICs). Until now, few silicon-based modulators with modulation speed above a gigahertz have been demonstrated. These include those with high-grade and grade rate. The present work is focused on a Si-based modulator with the electro-absorption effect of strained Ge on Si. This field-effect modulation has the potential to achieve >40 gigahertz modulation speeds. Germanium is a promising candidate in group IV materials for field-effect modulation, utilizing the so-called Franz-Keldysh effect, due to the relativistic effect of the 0.1 eV between its direct and indirect band gap. In other work, Ge can be considered as a pseudo direct band gap material. Therefore, the presence of an electric field significantly enhances the absorption of the Ge films, which further decreases the difference between the direct and indirect band gap for Ge. The Franz-Keldysh effect on Ge has been modeled and experimentally characterized in this paper. From the measurement, an electric field of 70 kV/cm increases the absorption coefficient at 1645 nm from 57 cm⁻¹ to 230 cm⁻¹, having a substantial enhancement of the Franz-Keldysh effect. This absorption is not dislocation-glide limited but rather dislocation-blocking limited. Thus, further changes to the graded buffer growth conditions will not result in dramatic lowering of the TDD, since the path length traveled by a glide dislocation increases with the growth rate.

In this work, we show that the high-grade buffer is H-bonded to the low-grade TDD, the growth rate can be increased radically to improve the graded buffer throughput. Second, single SiGe layers with varying relaxation on pre-stressed Si substrates and pre-stressed Si substrates. (TDD = 5 × 10⁴ cm⁻² for a 2% Ge/µm grade at 2×10⁻³ cm⁻² for a 50% Ge/µm grade and DPD ~ 10⁻³ cm⁻². Not only can this work abet the realization of SIe-based applications, including strained Si and SSOI, but it can be readily applied to other material systems as well.

3:45 PM EE12.8
Sn-based Group-IV Semiconductors on Si: New Infrared Detectors and New Materials for Commercial Epitaxy
Jose Menendez, Vijay R. D’Costa, Candi S. Cook, John Kouvetakis and John Tolle; 1 Physics and Astronomy, Arizona State University, Tempe, Arizona; 2 Chemistry and Biochemistry, Arizona State University, Tempe, Arizona.

We report on the growth and properties of binary GeSn and ternary SiGeSn alloys on Si substrates. Using a novel CVD approach, high quality GeSn films with up to 20% Sn have been deposited on Si substrates. X-ray studies indicate that the GeSn films are amorphous free, and TEM show that the large lattice mismatch between the film and the substrate is relieved by dislocations at the interface. The bulk of the films are found to be virtually dislocation free. This material is of great interest due to the predicted potential of the direct gap semiconductor to a direct gap semiconductor for moderate Sn concentrations. We have carried out extensive optical studies, including spectroscopic ellipsometry, to study its electronic structure. We find that the direct band gap, and, consequently, the basic absorption edge, shifts monotonically to lower energies as the Sn concentration is increased. The compositional dependence of the direct band gap shows a strong bowing, such that the direct band gap is reduced to 0.4 eV (from 0.8 eV for pure Ge) for a concentration of 14% Sn. The ternary SiGeSn alloy has been grown for the first time on GeSn buffer layers. This material opens up entirely new opportunities for strain and band gap engineering using group-IV materials. In particular, a ternary alloy makes it possible to decouple strain and composition. Our SiGeSn layers have constant above and below the lattice constant of pure Ge, and depending on the thickness and composition of the underlying buffer layer, the GeSn can be grown relaxed in both the cubic (H) and the tetragonal (I) phase, or with tensile strain. Among the multiple possible applications of this alloy, we show that it is theoretically possible to design multi-layer systems containing tensile-strained Ge layers with a strain-induced direct gap. In addition to acting as a buffer layer (EBM) for activation of SiGeSn, we have found that GeSn can act as a template for the subsequent growth of a variety of materials, including SiGe and III-V semiconductors. Several examples are shown demonstrating the excellent quality of these materials.

4:00 PM EE12.9
Minority Carrier Lifetime Measurement in Germanium on Silicon Heterostructures for Optoelectronic Applications
Josephine J. Sheng and Malcolm S. Carroll; 1 Sandia National Laboratories, Albuquerque, New Mexico; 2 University of New Mexico, Albuquerque, New Mexico.

Demand for low cost and high density near infrared (NIR) detection has motivated the development and use of germanium on silicon (Ge/Si) heterostructures to extend the optoelectronic application of Si technology. Ge/Si structures are currently being considered for NIR p/n detectors that may be compatible with Si CMOS. One potential use is as an intermediate layer in a compound that may allow direct heteroepitaxy of GaAs on Si for laser and solar cells. A common challenge to this technology is the minimization and monitoring of dark current inducing defects that may form in the Ge/Si due to the lattice mismatch with the Si substrate. Various techniques are under development to minimize these defects, which include relaxed buffer layers, and Ge on insulator methods (e.g. wafer bonding), however, many of these are not easily integrated with standard Si CMOS processes. Recently Ge repairs that include the interface in the junction were reported to produce devices with useful NIR performance despite the defective interface (e.g. Jc=10-15 mA/cm², responsivity at 1550 nm = 0.75 A/W, and 200 ps response time), while having the advantage of being easier to...
integrate with other Si devices [2,3]. Two critical parameters for the performance of such Ge/Si detector structures are the interface reconstruction and the Ge bulk lifetime, which should be as slow as possible to minimize dark current generation and maximize quantum efficiency. In this paper, we report measurements of the minority carrier lifetime in recrystallized amorphous-Ge (a-Ge) on Si, which is necessary to examine the feasibility of the device structure and evaluate the potential of these Ge/Si structures for detectors. Layers of a-Ge from 1 to 400 nm were deposited on Si 150 mm, p-type (2-50 Ωcm), (100) substrates using plasma enhanced chemical vapor deposition at 350°C. Samples were annealed at 1050°C in a nitrogen ambient. The minority carrier lifetime of each sample was measured using an indium-conducted, contactless, photocurrent set-up that measures the effective lifetime of the bulk and heterostructure and surfaces. Bulk Si substrate lifetimes were obtained independently before deposition and the surface recombination at the Ge or Si surfaces is suppressed through use of hydrogen termination obtained with a HF dip, which allows an effective Ge recrystallization velocity to be extracted. The effective Ge recrystallization velocity is the combined recrystallization from the interface and bulk Ge contributions. It is found that the effective heterostructure lifetimes are sensitive to both the growth and annealing conditions and that effective recrystallization velocities for the Ge layer can be reduced to as slow as 5-10x10^-6 cm/s. This value is promising compared to 10^-6 cm/s, which was estimated previously [1].

4:15 PM EE12.10
T-P Phase Diagram for the Epitaxy of 3C-SiC on Si(001).
Maki Suemitsu1, Yuzuru Narita1, Atsushi Konno1 and Hideki Nakazawa2; 1CIR, Tohoku University, Sendai, Japan; 2Faculty of Science and Technology, Hirosaki University, Hirosaki, Japan.

To construct ubiquitous-network (or ambient-intelligence) society using well-established Si technology, Si devices must acquire a new ability to “communicate” with various circumstances, via new carrierson of information such as biomaterials, photons, and certain chemicals, and mechanical deformations. Ultrathin cubic Si layer on Si (3C-SiC/Si) has a high potential in this respect, in that SiC is highly bio-friendly, a polar material compatible as a substrate for direct-gap complementary semiconductors, wide-gap in its electronic structure, chemically inert, and of considerable mechanical strength. We have been investigating the gas-source (GS)MBE of 3C-SiC/Si using an organosilane (OS) as a single precursore, and have developed the following techniques: (1) OS-buffer method that allows formation of the interfacial buffer layer at 650°C[1], 400°C below the conventional carbonization method, (2) OS-GSMBE method that allows qualified growth of 3C-SiC/Si at 800°C[2], 350°C below the conventional CVD method using SiH4 and propane, and (3) SiOS-single-domain method that allows formation of a single-domain 3C-SiC(Si-001)-2×1 surface on a layer as thin as 0.1 μm[3], which is compared to the previous requirement of 5 μm. In epitaxial processes using hydride-source gases like organosilanes, surface hydrogen plays a crucial role. Although surface hydrogen can be a useful surfactant or a template to control the growth, it in many cases acts as an unwanted site-blocker that may cause the surface abrupt termination and source-gas molecules and suppresses the surface migration of adatoms, deteriorating the quality of the grown film. We have in this work conducted a series of OS-GSMBE experiments on 3C-SiC/Si(001) under various monomethylsilane pressures (P) and substrate temperatures (T), and have obtained, by using FTIR and AFM evaluations, a kind of a T-P phase diagram on the quality of the film. As a result, good epitaxy was found to realize when P2(T)<P<0.5<P1(T) holds. Here, P1(T) and P2(T) are a pair of critical pressures, and each of them is an increasing function of T. P1 corresponds to a pressure below which considerable Si outdiffusion onsets from the Si substrate, forming voids underneath the interface. P2 corresponds to a pressure above which the epitaxial hydrogen coverage becomes too abundant, causing degradation of grown films. We found that the functional form of P1(T) is best given by an equi-hydrogen-coverage curve, obtained from a balance between the increase of the surface hydrogen coverage owing to desorption and the decrease by thermal desorption of hydrogen molecules.

4:30 PM EE12.11
Chemical Vapor Deposition and Defect Characterization of Silicon Carbide Epitaxial Films. Yi Chen1, Govindhan Dhanaara1, Michael Dudley1 and Hui Zhang2; 1Materials Science and Engineering, Stony Brook University, Stony Brook, New York; 2Mechanical Engineering, Stony Brook University, Stony Brook, New York.

 Silicon carbide (SiC) is an important semiconductor material used in high-power, high-frequency, and high-temperature applications because of its unique combination of properties such as high breakdown field, high electron velocity and high thermal conductivity [1-3]. The wide bandgap of SiC results in a low leakage current even at high temperatures. Epitaxial growth of SiC on Si is the most common way to grow SiC thin films for device applications. However, the defects generated during the growth such as hollow core and closed core dislocations as well as polytype inclusions can limit the device performance. We have developed a sophisticated CVD system aiming at understanding SiC growth kinetics and defect nucleation mechanisms during epitaxial deposition. The hot-zone for the CVD chamber has been designed and fabricated with the aid of temperature simulation using numerical modeling. Epitaxial films of silicon carbide have been grown on SiC substrates using propane and silane/silicon tetrachloride as precursor gases and hydrogen/argon as a carrier gas. The growth was carried out at around 150 Torr pressure in the temperature range of 1400-2000°C. Growth rate and morphology of the epitaxial films have been studied using scanning electron microscopy, Nomarski optical microscopy, atomic force microscopy and high resolution X-ray diffraction techniques. The details of the growth and characterization results will be presented. References: [1] Lebedev, A.A. and Chelnokov, V.E., Wide-gap Semiconductors for High-power Electronics, Semiconductor, 33, 999-1001, 1999. [2] Carter, Jr., C.H., Tsvetkov, V.P., Glass, R.C., Henshall, D., Brady, M., Muller, St.G., Kordina, O., Irvine, K., Edmond, J.A., Kong, H.S., Singh, R., Allen, S.T. and Pamlour, J.A., Progress in SiC from Material Growth to Commercial Device Development, Mater. Sci. Eng., B Bel-graz, X.R. Hul, M.M. Hamann, V. Prasad and R.H. Ma, chapter 6, p181-232 in "Crystal Growth Technology", Eds K. Byarapa, T. Ohachi, William Andrew co-published with Springer, NY 2003.

4:45 PM EE12.12
High-Speed and High-Quality Epitaxial Growth of 6H-SiC by Closed Sublimation Method. Tomohiko Maeda1, Yoshihiro Nakamura2, Motoaki Iwaya3, Satoshi Kamiyama4, Hiroshi Amano5, Isamu Akasaki1, Tomoaki Furusho2, Hiroyuki Kinoshita6 and Masahiro Yoshimoto7; 1Meijo University, Nagoya, Japan; 2SIXON Ltd., Kyoto, Japan; 3Kyoto Institute of Technology, Kyoto, Japan.

Thick and high-quality SiC epitaxial layers are indispensable for the high-speed SiC-based electronic devices with high breakdown voltage. It is known that a closed sublimation method enables us to grow SiC epitaxial layers with high crystalline quality and high growth rate of up to 100 μm/h [1-3]. Therefore, this technique is promising for high-production of SiC epilayers and devices with high throughput. In this paper, we report an extremely high speed SiC epitaxial growth by the closed sublimation method, and clarify a correlation between the crystalline quality and growth conditions, such as growth temperature and its gradient. In our experiments, we varied growth rates from 50 to 600 μm/h with changing the growth conditions of the closed sublimation setup. The substrate for the epitaxial growth was Si-face of 6H-SiC (0001) with an off-angle of 2° toward <11-20>. The growth pressure was kept constant at 4 Pa. The growth rate of SiC epilayer was varied with both the growth temperature and the temperature gradient from the source material to the substrate. We used several sets of graphite susceptors with different temperature gradient. The quality of epilayers was characterized by X-ray diffraction measurement. The full-width-at-half-maximum (FWHM) of X-ray diffraction peak gradually increased with the growth rate, indicating degradation of crystalline quality caused by the high growth rate. After an optimization of the temperature gradient, the high quality SiC epilayer, whose FWHM of X-ray rocking curve of (0001) diffraction is less than 0° arcsec, was obtained with the growth rate as high as 300 μm/h. While the growth rate is limited to ~20 μm/h for SiC grown by typical chemical vapor deposition (CVD), the high growth of 300 μm/h was achieved in closed sublimation method, including feasibility for high throughput. This technique may be applicable to the growth for other polytype crystals such as 4H, 3C and 15R, and valuable to the mass production with high throughput of SiC-based devices. References [1] T. Yoshida, Y. Nishio, S. K. Lilov and S. Nishino, Mat. Sci. and Eng., 206-208 (1996) 159. [2] M.T. Yoshikawa, S. Nishino and J. S. Arija, Inst. Phys. Conf. Ser. 142 (1996) 57. [3] T. Furusho, S. K. Lilov, S. Oshima and S. Nishino, Jpn. J. Appl. Phys. 40 (2001) 0737.