SYMPOSIUM Q

Rapid Prototyping Technologies–Tissue Engineering to Conformal Electronics

November 28 – 30, 2001

Chairs

Douglas B. Chrisey
Plasma Processing Section
Naval Research Lab
Code 6372
Washington, DC 20375
202-767-4788

Stephen C. Danforth
Rutgers Univ
Box 909
Piscataway, NJ 08854
732-445-2211

Linda G. Griffith
Div of Bioengineering & Environmental Health
MIT
Rm 66-466
Cambridge, MA 02139
617-253-0013

Symposium Support
DARPA

A Joint Proceedings with Symposium Q/EE
to be published in both book form and online
(see ONLINE PUBLICATIONS at www.mrs.org)
as Volume 698
of the Materials Research Society
Symposium Proceedings Series

*Invited paper
SESSION Q1: DIRECT WRITING ELECTRONIC COMPONENTS
Chair: Douglas R. Chrisey
Wednesday Morning, November 28, 2001
Room 308 (Hynes)

8:30 AM *Q1.1
ISSUES IN MATERIALS SYSTEMS FOR DIRECT-WRITE PROCESSES. Kenneth H. Church, Sopol Inc., Stillwater, OK.

Materials systems for direct-write deposition by through-nozzle and quick-lens dispensing are presently the subjects of intense R&D efforts. Issues include viscosity, solids loading, agglomeration, solvent-system volatility, surface-energy interactions, and thermal-processing considerations. Some parameters are related to the overall properties of the dispensed lines as they pertain to geometries, dispensing rates, thicknesses, deposition of multiple pastes, substrate character, and deposition onto conformal surfaces. EXEMPLARY results of fine-line geometry deposition trials for two systems are presented.

9:00 AM Q1.2
LASER DIRECT WRITING OF PASSIVE MICROSOPIC CIRCUIT ELEMENTS AND DEVICES FOR RF AND MICROWAVE APPLICATIONS. H.D. Wu, SPA Inc., Large, MD; R. Medle, The George Washington University, Dept. of Mechanical and Aerospace Engineering, Washington, DC; R.C.Y. Aueng, Naval Research Laboratory, Washington, DC; J.E. Vollmers, University of Virginia, Dept. of Physics, Charlottesville, VA; D.R. Chrisey, Naval Research Laboratory, Washington, DC.

A novel laser-based transfer technique called Matrix Assisted Pulsed Laser Evaporation-Direct Write (MAPLE-DW) has been used to prototype various passive mesoscopic circuit elements and devices on Kapton substrate. With this technique, we have made circuit elements such as microstrip lines, resistors, capacitors, and inductors as well as devices such as integrated LC bandpass filters and RC band reject filters for RF and microwave applications. These components and devices were fabricated in air and at room temperature with subsequent thermal processing in furnace or selective laser sintering. The performance of these components and devices was characterized from 1 MHz up to 20 GHz using an impedance analyzer and microwave probe and/or a network analyzer and an universal test fixture. The results clearly indicate that MAPLE-DW is a rapid prototyping and agile manufacturing approach that simplifies the processing and provides greater flexibility than is possible with screen printing approach.

9:15 AM Q1.3
NOVEL MICROSTAMPING METHODS FOR 3D CIRCUIT PATTERNING ON POLYMERS. Peter M. Moran, Institute of Materials Research and Engineering, Singapore; Willem T. Chen, ASE (US) Inc., Santa Clara, CA.

We have developed a new microstamping method for patterning three-dimensional circuitry on polymer substrates. In this method a stamp is immersed in a colloidal suspension of polymer-stabilized palladium nanoparticles. The nanoparticles adsorb weakly to the stamps surface. A polymer substrate is then molded against the stamp and the stamp is slowly withdrawn from the mold with the molded polymer and are transferred during separation. These processes act as a catalyst for subsequent electroless plating. This method is entirely additive and allows the formation of fine-line, buried and three-dimensional circuitry on polymers. In a previous study[1] we developed another microstamping method to produce freestanding bipolar polymer features. The bipolar polymer features produced were as small as 2 microns by 2 microns in cross-section and 10 microns tall and are potentially useful in applications such as nerve-guides and chemosensors. Possibilities of combining this method with our current nanoparticle stamping method to fabricate high aspect ratio metalized features will be discussed. (1) P.M. Moran and G. Robert, Appl. Phys. Lett., in press.

10:00 AM Q1.4
RAPID RESPONSE COMPUTER AIDED MANUFACTURE OF PRINTED WIRING BOARDS. Gregory A. Jaklinski, Paul H. Kydd, Pandoc Inc., Rocky Hill, NJ.

Digital printing of conductive traces on conventional laminate and polymer film circuit substrates can provide circuits on demand in quantities of a few hundred, easily and inexpensively. This paper describes a computer-automated alternative to the conventional photo-etch technology for producing printed wiring boards. The procedure is based on a new technique developed for metal-organic decomposition chemistry for the direct, additive metallization of holes and printing of circuit traces. The new technology, named Parmod (r), has been used to prepare demonstration circuits with pure copper conductors and through hole metallization on laminate substrates, which are believed to be the equivalent of conventional plate-etch circuits. A description of the process is given and the results of testing the circuits produced are summarized.

10:30 AM Q1.5
RAPID PROTOTYPING OF PLASTIC MICRO DEVICES BY EXCIMER LASER ABLATION. Thomas Kleitzbuecher, Torsten Brabe, Manfred Lack; Institut fuer Mikrotechnik Mainz GmbH, Mainz, GERMANY.

Nowadays the application of micro devices in many fields like e.g. in the life sciences, chemistry and also optics strongly grows in importance. Micro structures often allow efficient processes with low resource consumption and the possibility of high integration. Typical examples are micro and mniotiter plates for chemical screening or DNA chips for sequencing, micro mixers and reaction systems for synthesis on demand or micro optical elements like couplers for optical data transmission. Especially plastics are well suited for the cost effective large number fabrication, using high precision mould inserts with injection moulding or hot embossing. Since the micro devices become more and more complex (keywords lab on a chip and micro total analysis systems) the fabrication of mould inserts will be more expensive and time consuming. This is the reason why often methods of rapid prototyping are required for design qualification and functionality test purposes during the development. It will be demonstrated that Excimer laser ablation is a well suited method for rapid prototyping of quasi three-dimensional micro structures. Almost all polymers can be ablated by the UV laser radiation with very high accuracy, using mask projection techniques. Therefore, the choice of a suited polymer with adapted material properties like e.g. chemical resistance, optical surface quality or bio-compatibility allows to account for the requirements of the corresponding application.

Moreover, the prototypes can easily be transformed into mould inserts for large number fabrication, using the Laser-LIGA technique. The corresponding techniques will be explained and demonstrated with the aid of several examples, especially taking into account the material aspects.

11:00 AM Q1.6
LASER-BASED DIRECT WRITING OF ELECTRONIC COMPONENTS. B.H. King, M. Rehn, M. Eijsen, P. Seigal, Optomec, Inc., Albuquerque, NM.

The microelectronics industry has been steadily shrinking feature sizes to around 0.1 microns. However, a corresponding pace has not been maintained in packaging, increasingly limiting the performance of electronic products. The packaging area for passive components such as resistors, capacitors, inductors, and interconnects is not only the substrate, but also the pads, vias, and directly writing interconnects between passive devices solder joints may be eliminated, making the entire package more robust. Optomec is developing a laser-based technology for directly writing passive electronic components onto circuit boards and substrates. The process has been demonstrated for interconnect metals, resistor and dielectric compositions, and battery materials on substrates ranging from FR-4 to silicon. This process may find broad applications in the electronic packaging industry from products such as cell phones to component manufacturing. Recent results, including micron-scale deposition techniques, material developments, laser treatments of metals and dielectrics and component performance, will be presented.

11:15 AM Q1.7
AN INTEGRATED TOOL FOR RAPID PROTOTYPING OF ELECTRONIC CIRCUITS USING A LASER DIRECT WRITE TECHNIQUE. Scott Madewell, Michael Dugan, Potamac Photonics, Inc., Lanham, MD; P. Alinna, Hugh Denham, Superior MicroPowders, LLC, Albuquerque, NM; Alberto Pique, Rehit Modi, Ray Aueng, Naval Research Laboratory, Washington, DC.

A laser based tool has been developed for the fabrication of electronic circuits. The tool integrates three separate functions on a single platform. These functions are deposition, laser processing, and laser micro-machining. Deposition is accomplished by depositing the target material in a thin layer over a transparent backing layer, holding the target material in close proximity to a receiving substrate, and irradiating the target material from behind with a short pulse UV laser. The UV pulse vaporizes a small amount of material at the
target material/layer interface, thereby propelling the remainder of the target material toward the receiving substrate. Pattern formation is achieved by translating the target substrate, scanning the laser beam, or a combination of the two. After transfer, most materials require some thermal processing, even oven baking or laser sintering. Fabricated circuits have included conductors (Ag, Ag-Pd, Au), resistors (cermet and polymer thick film), and dielectrics (ceramic and polymer thick film). These materials have been patterned with feature sizes as small as 10 µm and linear write speeds as high as 1 meter per second. The tool includes an integrated, near IR laser which can be operated both CW and pulsed for thermal processing. Laser sintering of metals, cermet resistors, and ceramic dielectrics has been demonstrated at low temperature, polymer substrates. The laser sintering technique that we are pursuing allows the sintering or annealing of high temperature materials without damaging the underlying substrate. The tool includes a complete, state-of-the-art laser micromachining system, capable of milling recesses, drilling vias, trimming components, and excising circuits. No mask or photolithography is required. No photoreists or wet chemistries are needed. The tool does not require a clean room environment. The combined functionality and speed result in a flexible and powerful tool for rapid prototyping of circuits, and potentially, small scale production.

11:45 AM Q18

We have utilized MAPLE DW (Matrix Assisted Pulse Laser Evaporation Direct Write) to rapidly (~1 m/sec) deposit mesoscopic patterns (0.01 to 10 µm) of passive electronic materials on laser sintered them at low temperatures (<300°C) for applications in conformal devices. This technique is a novel CAD/CAM laser forward-directed transfer technique that utilizes a composite ribbon made up of powders, chemical precursors, and various rheological and surfactant materials to transfer to a polymer substrate in ambient air and at room temperature. We have characterized the mechanism and kinematics of the technique with high-speed imaging. The materials deposited included metals, high and low k dielectrics, polymer and cermet resistors, and ferries. We have also deposited devices ranging in complexity from simple circuits and complete subsystems. The electronic properties of the materials were comparable to conventional thick film techniques such as screen printing, but this approach allows for rapid design changes, allows the deposition of multiple materials, and occurs at processing temperatures enabling more useful substrates. This presentation will outline the status of MAPLE DW of passive electronic materials and describe the future applications of the technique to other material systems.

SESSION Q2: RAPID PROTOTYPING SENSORS AND STRUCTURES
Chair Stephen C. Danforth
Wednesday Afternoon, November 28, 2001
Room 308 (Hynes)

1:30 PM Q2.1
STEREOELECTROGRAPHIC PROCESSING OF CERAMIC ORGANIC COMPOSITES FOR ORTHOPAEDIC APPLICATIONS. Jim H. Lee, Robert K. Prudhomme, and Hans A. Akkar, Department of Chemical Engineering and Princeton Materials Institute, Princeton University, Princeton, NJ.

ABSTRACT NOT AVAILABLE
Ceramic stereolithography (CSL) is used to fabricate complex-shaped ceramic/organic composites by laser photocuring a concentrated ceramic dispersion in photocurable solutions. Key process parameters in CSL, such as layer thickness, resolution, batch spacing, and overhang control on the knowledge of light propagation in concentrated multiple scattering dispersion. By incorporating biocompatible polymers in the matrix phase, biomaterials with controlled microstructure may be constructed.

Alumina (Al₂O₃) was used as the reinforcing phase in a matrix of 2,2-bis(3,4-dihydroxy-3-methyl-2-propylphenoxy) propane (BisGMA), which is a commonly used monomer in dental fillings. Free radical polymerization was initiated with 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone (DMPA). In studies dealing with the processing of these reinforced biocomposites, we investigated the depth of curing for model resin systems as a function of photoinitiator concentration. An optimal photoinitiator concentration that maximized the gel cure depth was observed. We probe this relationship through the development of a model that incorporates photocrosslinking kinetics, coupled with concepts of critical gel formation. The outcome is a model that complements the standard equation of stereolithography. We make use of the model in extending our work to noncomposite fabrication, again using alumina.

2:00 PM Q2.2
RAPID PROTOTYPING OF CERAMIC-BASED PHOTONIC BANDGAP STRUCTURES. Jennifer Synowiecz, Bonnie Genzen, Brad Klotz, Weapons and Materials Research Directorate, Army Research Laboratory, Aberdeen Proving Grounds, MD.

An inverted photonic band gap (PBG) structure was constructed from 3D CAD models that were printed as a polymer matrix using a precision rapid prototype. This PBG structure was constructed of alternating layers of two 2D photonic bandgap structures. The first layer contained periodic arrangements of rods in air and the second layer contained a periodic arrangement of holes in a dielectric. The polymer matrix was then used as a mold to cast a multimaterial, containing BaTiO₃/MgO ceramic powders and binders dispersed in ethyl. The mold was then removed to leave behind a ceramic green body that subsequently was sintered in air at high temperatures (~1500°C) to achieve fully dense structure. This procedure was used to characterize the precision of the part. This study evaluates the effect of casting process, binder removal and shrinkage during sintering on the final net shape.

2:15 PM Q2.3
IMPROVEMENT OF SURFACE FINISH OF PARTS PRODUCED BY FUSED DEPOSITION OF CERAMICS (FDC). M. Bohin, B. Conner, J. A. Sufko, and T. Drisch, Rutgers University, Dept. of Ceramic and Materials Engineering, K. Seyd and M. Jafari, Rutgers University, Dept. of Industrial Engineering.

Fused Deposition of Ceramics (FDC) is a solid freeform fabrication process utilizing thermoplastic binder impregnated with ceramic powders. In this work, the EC99 binder system and lead zirconate titanate (PZT) were used. One of the current limitations of the FDC process is that built surface finishes are not yet sufficient. Currently, the surface finish of as-built parts varies from 10-30 micrometers. Therefore, two surface processing methods were investigated to determine if grinding machining could produce significantly finer surface finishes. The first machining process examined was the use of a high-speed drill. The second process examined was the use of a high-speed drill. With the introduction of a green machining process prior to the binder removal and sintering steps, the average surface roughness, Ra, was reduced to approximately 1 micrometer. In order to accomplish the best surface finish, it was found that three key parameters needed to be controlled: workpiece temperature, workpiece feed rate and tool rotational speed.

2:30 PM Q2.4
SLURRY-BASED 3DP AND FINE CERAMIC COMPONENTS. Michael J. Cima, Richard Holman, Emmanuel Sachs, Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA.

The slurry-based 3DP process is a solid freeform fabrication technique developed at MIT for production of fine ceramic components with complex geometries and fired densities in excess of 95% of theoretical density. Current research involves investigating the use of these ceramic composites in biomedical applications, controlling minimum feature size in S-3DP, A balance between spreading of the binder solution on the surface of the S-3DP powder bed and infiltration was found to control minimum feature size, while interactions between the polymeric binder and the powder surface (polymer adhesion) control the minimum feature size. A series of experiments were conducted to determine the minimum feature size from 300 microns to less than 150 microns.

3:30 PM Q2.5
PROCESSING AND CHARACTERIZATION OF Al₂O₃ SKELETONS AND Al₂O₃/CO-CRESEY COMPOSITES. R.C. McCullough, D.E. Niesz, and S.C. Danforth, Department of Ceramic and Materials Engineering, Rutgers University, Piscataway, NJ.

Fused deposition of ceramics (FDC) has been used to fabricate macroscopically graded ceramic skeletons. These Al₂O₃ skeletons were subjected to binder removal and sintering treatments. The sintered skeletons were then infiltrated with copper alloys. Both the skeletons and composites were characterized for micro and macro structure using optical and electron microscopy. Fracture toughness and hardness were determined using Vickers indentation. The authors will discuss potential applications of the macroscopically graded ceramic/metal composites, focusing primarily on impact.
SESSION Q3 ENERGY STORAGE AND MODELING

Chair: Michael J. Stuke

Thursday Morning, November 29, 2001
Room 308 (Hynes)

8:30 AM Q3.1

DIRECT WRITE MICRBATTERIES FOR NEXT-GENERATION MICROELECTRONIC DEVICES
Karen E. Swider-Lyons, Alberto Pique, Craig Arnold, Ryan Wartena, Naval Research Laboratory, Washington, DC.

The next generation of miniature electronic devices will require lightweight, high power energy sources. We are using the matrix-assisted pulsed-laser evaporation process, MAPLE DW, to fabricate these sources directly into integrated circuit systems. A range of battery designs and arrays are rapidly fabricated from commercially available materials at low temperatures and ambient pressure. The power source design is easily modified with this CAD/CAM process for optimum performance in specific devices. Conformal application of the power sources facilitates space and weight conservation in the microelectronics. Examples are given for planar pseudocapacitors and nickel alkaline batteries.

9:00 AM Q3.2

EFFECTS OF LASER PROCESSING ON MATERIALS USED FOR DIRECT WRITE MICRBATTERIES
Craig B. Arnold, Alberto Pique, Karen E. Swider-Lyons, Naval Research Laboratory, Washington, DC.

We are examining the influence of laser energy and wavelength on the electronic and chemical properties of microbattery systems. Li- and Zn-based microbatteries are produced by a novel laser forward transfer process called matrix-assisted pulsed laser evaporation direct write (MAPLE-DW) which can produce structures on the mesoscopic (1 micron to 1 mm) length scale under ambient conditions and onto various types of substrates. Additional control over the interfacial and film structure is gained by subsequent laser processing. Using the UV transfer laser, we perform several in situ operations including surface processing, trimming and micromachining of the transferred materials and substrates. In situ processing such as annealing, melting and selective laser sintering of the transferred materials are performed using an IR laser (10.6 microns, 600 Hz pulse width). Finally, we analyze these microbattery devices for their storage and discharge properties as a function of the above laser processing conditions on the deposited films.

9:15 AM Q3.3

EVALUATION OF DIRECT WRITE CAPACITORS

Capacitors or components have been manufactured by direct-write hardware and methods. Their electronic properties and behaviors have been evaluated in terms of firing method, substrate material, and paste materials systems. Firing methods included conventional oven firing and laser processing. Deposition substrates included ceramics and Kapton plastic. Materinks systems under evaluation included traditional screen-printable paste systems, polymer-based paste systems, and new low-decomposition-temperature paste systems. Physical properties under evaluation included temperature coefficient of capacitance, component variance, frequency response, and sensitivity to humidity.

10:00 AM Q3.4

DIRECT WRITE PROCESSES AS ENABLING TOOLS FOR NOVEL ANTENNA DEVELOPMENT

Significant research effort is regularly applied to the goal of reducing the size of radio-frequency antennas while maintaining all of the positive attributes of proven but relatively large antennas. Such parameters include frequency response (multiple or simple), bandwidth, and complexity of the antenna driver circuit structures require iterative optimization. The direct-write processes now available have enabled the insertion of reactive-loading elements as integral parts of the antenna structure, especially new conformal designs. These
reactive nitrogen species were used in conjunction with fractal design.

techniques to achieve antenna devices that were reduced in size to
as small as half the size of traditional counterparts. The performances
of miniaturized antennas constructed by direct-write methods were
evaluated and compared to those of traditional antenna structures.

10:15 AM Q3.5
LASERDIRECT WRITING OF CONDUCTOR AND DIELECTRIC MULTILAYERS FOR STORAGE CAPACITOR APPLICATIONS.
D. Young, H.D. Wu, R. Modi, H. Denham, D.B. Chrisey, Naval Research Laboratory, Washington, DC.

In the past, laser direct writing has been successfully used to write single layers of conductive, dielectric and resistive inks, which are then coated with conformal films to control thermal or photochemical processing. Many ink-substrate and material conversion issues are easily addressed in these single-layer cases, because the substrates used for writing of electronics are typically smooth and chemically inert. However, the fabrication of capacitors, bridges and routing conductor lines and ferrite core inductors and all require multiple layers of patterned material. Direct-writing of these multilayer structures is much more challenging. In this paper, we present the successful direct writing of Ag/glue-organic/Ag parallel plate capacitors by laser-direct writing of Ag and dielectric inks. After conversion, the Ag layers exhibit 10 times bulk resistivity, and the dielectric layer has a dielectric constant of 150 and loss of 2%.

Using this example, multilayer issues such as material interdiffusion, reaction, precursor wicking and surface roughness will be discussed.

10:30 AM Q3.6
DEEPICTIVITY PROPERTIES OF FLASMA SPRAY DEPOSITED
BaO.85SrO.15TiO3 (BST) thick films prepared by plasma-spray were investigated. The frequency and temperature dependence of the dielectric properties were measured using an impedance analyzer. The relative dielectric constants of BST layers measured at room temperature were in the range of 100 to 200 and were dependent upon the deposition parameters. The dielectric properties of BST layers showed Curie-Weiss behavior above room temperature. However the Curie temperature was suppressed for the compositions studied. After annealing at 500°C in air, the dielectric constant increased up to 240. This increase in dielectric constant was attributed to the crystallization of an amorphous second phase. Annealing effects on the microstructure were studied using transmission electron microscopy.

10:45 AM Q3.7
DIRECT WRITING OF FERROELECTRIC CAPACITORS AND THEIR IN-SITU SEM IMAGING USING A PROCESSING TECHNIQUE.

Ferroelectric capacitors have been fabricated using a novel laser-based transfer technique called "Matrix-Assisted Pulsed Laser Evaporation-Direct Write (MAPLE-DW)" with subsequent in situ thermal processing by selective laser sintering. MAPLE-DW is a versatile direct-writing technique capable of writing a wide variety of materials on virtually any substrate in air at room temperature. Barium titanate (BTO) and lead magnesium niobate (PMN) based capacitors with capacitance to area ratios of 72 fF/mm² and loss tangent of less than 0.4% at 1 MHz were deposited on alumina and sapphire substrates under ambient conditions. Electrical characteristics of these MAPLE-DW deposited capacitors were studied at a wide frequency range (1 MHz to 1.8 GHz).

11:00 AM Q3.8
MICROSTRUCTURAL STUDY AND THERMAL MODELING OF LASER FORMED TiAl4V.
S.M. Kelly, S.L. Kampe, Virginia Tech, MSE Department, Blacksburg, VA.

A two-dimensional thermal model for Aeromet Corporations Laser Additive Manufacturing (LAM) process has been developed to predict the thermal history of Laser Formed TiAl4V structural parts. The motivation behind the thermal model is to simulate the time-temperature conditions responsible for certain microstructural features, which are observed in as-processed components. For example, the LAM TiAl4V microstructure exhibits large columnar grains that have grown through multiple deposited layers, a well-defined heat-affected zone in the substrate, and the presence of macroscopically-visible layer bands. The microstructure of the layer band consists of larger colonies of acicular or transformed β, whereas the adjacent material consists of smaller colonies having the same type of structure. In this work, the thermal model is used to verify that the presence of layer bands is a result of a narrow region of material experiencing a short-duration thermal excursion into the β phase field from the α + β phase field.

11:15 AM Q3.9
ULTRA-HIGH-SPEED IMAGING OF A LASER FORWARD TRANSFER PROCESS USING A COLLOIDAL INK LAYER.
D. Young, H.D. Wu, R. Modi, H. Denham, A. Piquette, D.B. Chrisey, Naval Research Laboratory, Washington, DC; D.D. Diott, Department of Chemistry, University of Illinois, Urbana-Champaign, IL.

Recently, focused laser pulses have been used to deposit material from thin (10 um) layers of colloidal inks, for pattern generation and rapid prototyping applications. The resolution and homogeneity of such written structures is strongly dependent on laser and material parameters. In this work, ultra-high-speed (1ns time-gating) time-resolved optical microscopy has been used to study the transfer dynamics in this process. A sputtered-barium titinate ink layer was irradiated with 355nm, 150 ns laser pulses at atmospheric pressure. Observable plume formation begins after the end of the laser pulse, and continues for 1.3 us. The plume consists of micron-size particles and propagates both normally and parallel to the ink surface, at velocities that are strongly dependent on laser fluence. There is evidence of a supersonic transition at approximately 600 J/cm². It appears that the forward transfer mechanism can be either solvent vaporization or particle ablation in the colloidal layer. A discussion of the transfer mechanism and its relation to improved writing properties will be presented.

SESSION Q4: LIQUID AND DISPENSING DEPOSITION
Chair: Karen E. Whiteley, Thursday, November 29, 2001, Room 308 (Hyatt)
3:15 P M Q4.4
DIRECT INK-JET PRINTING OF ALUMINA COMPONENTS.
Chris Ainsley, Nuno Reis, and Brian Derby, Manchester Materials Science Centre, UMIST, Manchester, UNITED KINGDOM.

Alumina slurries containing up to 45% by volume ceramic particles suspended in paraffin wax have been developed with viscosity sufficiently low to allow direct ink-jet printing. Components fabricated by printing have been dewaxed and sintered and any distortion introduced during these processes measured. Differences in shrinkage are correlated with the direction of droplet motion during printing and the influence of droplets impact on local micro segregation in the deposited body investigated prior to printing.

3:30 P M Q4.5
ANALYSIS OF DROP-ON-DEMAND INK-JET PRINTING FOR RAPID PROTOTYPING. Dong-Yoon Shin, Manchester Materials Science Centre, UMIST, Manchester, UNITED KINGDOM; Paul Gravemi, Dept. of Chemical Engineering, UMIST, Manchester, UNITED KINGDOM; Brian Derby, Manchester Materials Science Centre, UMIST, Manchester, UNITED KINGDOM.

Ink-Jet printing technology has been one of the earliest technologies used for rapid prototyping. In order to print materials from highly loaded slurries it is necessary to understand the mechanism of drop formation in a drop-on-demand print head. Here we analyse the actuation mechanisms of a piezoelectric cylindrical actuator and the hydrodynamics within the channels leading to achieve more realistic boundary conditions for the numerical simulation of the drop formation process. Linearised Navier-Stokes equations for Newtonian flows are solved for a symmetric piezoelectric actuator. These results are inserted into a numerical simulation using Flow3D. The predicted results of the simulations are shown to agree well with experimental measurements.

3:45 P M Q4.6

Direct laser patterning on polymers is of great interest both for scientific understanding of laser-materials interactions and for potential application in rapid prototyping of conformal electronics. Pulsed Nd:YAG laser surface modification and subsequent selective activation and electroless plating have been investigated on polyimide films in air. It has been shown that fine-line circuitry can be obtained using this method. Laser irradiation on Kapton initially caused localized surface peeling that gradually formed individual corn structures. As laser light was continuously delivered to the surface the number of corns increased and eventually covered whole irradiated area. The surface structural evolution was studied by SEM and XPS analysis. After irradiation the sample was immersed in a colloidal suspension of Pt/PVP particles. Seeding occurred on the irradiated regions only. Those regions were then metalized using electroless plating. We have used this method to place selectively within microchannels. Our results show that plating ability of laser irradiated surface and the adhesion between plated metal and polyimide depend not only on the surface roughness, but also on the chemical composition of the surface. The surrounding atmosphere influences the chemical composition of the laser-irradiated surface. Surfaces became denitroalkylized after few days in air or ten minutes in a UV ozone environment [100°C]; XPS and TOF-SIMS measurements were employed to understand this phenomenon.

4:00 P M Q4.7
CHEMICAL VAPOR DEPOSITION BY PULSED ULTRASONIC DIRECT INJECTION OF LIQUID PRECURSORS PRODUCES VERSATILE METHOD FOR CREATION OF THIN FILM CIRCUITS AND DEVICES. Mark W. Lebl, Sonos Tek Corporation, Milton, NY.

Unique ultrasonic direct injection method allows novel use of nanophase materials, polymers, metal-organic and ceramic precursors. By use of the versatility of directed and continuously varying chemical species, and morphology and structure may be varied to produce desired characteristics. By sequential application of these strategies one may fabricate MEMS, OLED's, deposit conformal coatings, create surface acoustic wave (SAW) chemical sensors and many other thin film circuits and devices. Some of these will be demonstrated.

4:15 P M Q4.8
DIRECTED ASSEMBLY OF COLLOIDAL SILICA GELS.
G. Grason, Univ. of Chicago, J.A. Lewis, University of Illinois, Dept of Materials Science and Engineering, Urbana, IL.

Mesoscopically periodic structures were fabricated via robotic deposition of concentrated colloidal gels. During this directed assembly process, a colloidal “ink” (diameter ∼10-1000 µm) is extruded through a cylindrical nozzle (diameter ∼10 to 1000 µm) to architect complex, 3-D structures in a layer-by-layer build sequence. We have studied the effects of colloidal size, volume fraction, and particle size on flow behavior of such gels through a microfluidic (nozzle) element of varying size. Our aim is to develop a process map that elucidates the importance of gel rheology (e.g., τr and P(r)), volume fraction, and nozzle/particle size ratio on this deposition process.

SESSION Q5: TISSUE ENGINEERING
Chair: Douglas B. Chrisley
Friday Morning, November 30, 2001
Room 308 (Hynes)

8:30 AM Q5.1
CELL-BY-CELL CONSTRUCTION OF TISSUE BY LASER TRANSFER. Bradley Ringdene, Douglas Chrisley, Alberto Pique, Ray Asayeng, Barry Spargo, New Research Laboratory, Washington, DC; Peter Wu, Southern Oregon University, Dept of Physics.

In order to fabricate and interface biological systems for next generation applications such as biosensors, prototype microcomputer systems, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits, microfluidic devices, or even living tissue. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation directed write [MAPLE DW], that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from solutions of proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovary, mouse pluripotent cells), and active proteins and antibodies (biotinylated bovine serum albumin, and BSA). That we find our approach is unique in that it enables immobilized engineered tissues to be constructed cell-by-cell, depositing both the living elements and semi-rigid scaffolding required to build complex three-dimensional tissue structures. We will present experimental results on our recent efforts to fabricate tissue-based microfluidic networks as well as human osteoblast (bone/mesenchyte) (cartilage) cellular structures for hip and knee reconstruction.

9:00 AM Q5.2
ABOARD-TISSUED DIRECT-WRITE OF BIOLOGICAL MATERIALS FOR BIOMEDICAL APPLICATIONS. Gregory J. Marquez, Michael J. Ren, W. Doyle Miller, Optomec, Inc., Albuquerque, NM.

Applying life sciences and engineering principles to the study of cells and engineered tissue has resulted in various successes. These endeavors are poised towards development of functional neo-organs used as native tissue substitutes. Concurrent with this goal, technologies are directed in the general arena of biocompatible polymer scaffolds, biomimetic extracellular matrices, control of stem cell differentiation, biomolecule signaling, and directed material delivery. Optomec Inc. is developing an aerosol-based direct write process for deposition of biological materials into three dimensional, micro-scale patterns. The process uses pneumatic atomization to produce aerosol droplets of proteinaceous colloidal dispersions and whole cell suspensions. The droplets are entrained in an air stream and deposited with a proprietary deposition tool. The biological materials can be seeded into three dimensional polymer scaffolds and various substrate surfaces. Optomec direct write process has applicability to the additive fabrication of engineered tissue. Other applications of the direct write tool include rapid prototyping of analytical biosensors, hybrid BioMEMS, and microarray devices.

9:15 AM Q5.3
DEVELOPMENT OF A SOLID FREEFORM FABRICATION METHOD FOR CONSTRUCTING FUNCTIONALLY TAILORED TISSUE REGENERATION DEVICES. Sunan Das, Dept. of Mechanical Engineering, Scott J. Hollister, Dept. of Biomedical Engineering, Paul H. Kubesldah, School of Dentistry, University of Michigan, Ann Arbor, MI.

This paper discusses the development of a new solid freeform
fabrication method for constructing biomedical devices with designed compositions of materials specifically for the purpose of therapies related to tissue regeneration and controlled delivery of drugs and bioactive factors. Selective laser sintering (SLS) is the proposed method to be used to build functionally tailored composite devices. Presently, commercially available SLS machines are only capable of constructing freeform objects using monolithic powder compositions. In this paper, we show concepts of a variant of SLS that will be capable of constructing objects with multiple materials and true three-dimensional heterogeneous composition. This capability of building functionally graded structures using multiple materials presents unique applications for regenerating multiple tissues. For example, a whole joint structure including a bone scaffold, combined with a cartilage scaffold and a ligament scaffold that have different functional architectures could be built in a single assembly. We present results from preliminary experiments aimed at demonstrating capability for fabricating tissue regeneration scaffolds with discrete and graded polymer-polymer and polymer-polymer/ceramics. The polymers investigated include Polyactic acid (PLA), Polyglycolic acid (PGA) or their co-polymers (PLGA) while ceramics investigated include Hydroxyapatite (HA) and Tri-Calcium Phosphate (TCP).

10:00 AM Q5.4

Most methods reported for cell-surface patterning are generally based on photolithography and use of silicon or glass substrates with processing analogous to semiconductor manufacturing. Here, we report a novel method to prepare patterned plastic surfaces to achieve cell arrays by combining homogeneous polymer grafting by electron beam irradiation and localized laser ablation of the grafted polymer. Poly(N-isopropylacrylamide) was covalently grafted to surfaces of tissue culture-grade polystyrene (TCP) dishes. Subsequent ultraviolet (UV) ArF excimer laser exposure to limited square areas (sides of 30 to 100 μm) produced patterned ablative photodecomposition of only the surface region (~100 nm depth).

Three-dimensional surface profiles showed that these ablated surfaces were as smooth and flat as the original TCP dishes. TOF-SIMS analysis revealed that the ablated domains exposed basic polystyrene and were surrounded with PIPAm-grafted chemistries. Prior to cell seeding, fibronectin was adsorbed selectively onto ablated domains at 20°C, a condition where the non-ablated grafted PIPAm matrix remains hydrated and non-adhesive. Hepatocytes seeded at 20°C specifically adhered onto the ablated domains adsorbed with fibronectin. A one hundred-cell domain array was achieved by this method. This surface modification technique can be utilized for fabrication of cell-based biosensors as well as tissue engineered constructs.

10:15 AM Q5.5
DIRECT-WRITE CONSTRUCTION OF TISSUE SCAFFOLDING STRUCTURES. Anatoly M. Kachurin and Kenneth H. Church, Scipero, Inc., Stillwater, OK.

Direct-write hardware and methods traditionally used to deposit electronic materials are now being used to deposit tissue-scaffolding materials. Direct-write processes allow the rapid prototyping and construction of two- and three-dimensional structures potentially superior to those of the current state of the art. Modifications to typical tissue-scaffolding materials required for simultaneous compatibility with in vivo use and direct-write processes were investigated.

10:30 AM Q5.6
RAPID PROTOTYPING OF HYDROGEL SCAFFOLDS FOR USE IN TISSUE ENGINEERING. R. Landers, R. Molsdorf, Freiburger Materialforschungszentrum, Freiburg, GERMANY; U. Huesner, R. Schmelzeisen, Universitätsklinik für Mund-, Kiefer- und Gesichtschirurgie, Freiburg, GERMANY.

Tissue engineering is a very rapid developing area of science. The main focus has been on the culture of cells for the last ten years. Now, also the generation of individual 3D structures becomes important. A versatile 3D plotting technology has been developed at the Freiburg Materials Research Center in 1999 to produce scaffolds for tissue engineering applications with an interconnecting pore structure and an individual shape. This process is based on 3D dispensing of liquids into a viscous medium with a density similar to the plotting material. The resulting buoyancy force compenates the gravity force and therefore it is possible to dispense not only high viscous, but also low-viscous solutions without deformations. The contact between the plotting material and the medium causes solidification of the plotting material. One possibility to solidify the plotting material is a change in temperature. Therefore scaffolds have been designed from thermoelastic polymers (PLGA, PCL) or thermoreversible hydrogels (PAA). Furthermore chemical reactions like complex formation have been used to generate hydrogel scaffolds under cell compatible conditions. Hydrogel scaffolds itself are suspected to play an important role in tissue engineering in future, because of their unique possibilities. They are biocompatible, enable diffusion of hydrophilic substances, are flexible and closely connected to the extracellular matrix. No other Rapid Prototyping technique has been able to create biocompatible hydrogel scaffolds under cell compatible conditions up to now. The materials used in this new technique range from gelatine, collagen, to polyelectrolyte complexes and fibers. The growth of cells onto the surface has been demonstrated for different cell types. Furthermore the incorporation of living cells into the hydrogel during processing is demonstrated. This development in the RP field enhances the fabrication of living implants and is of interest for drug release.