SPECIAL THANKS

IWGO 2019 has been funded, in part, by the generous contributions of these organizations.

Conference Sponsor

Novel Crystal Technology, Inc.

Tuesday, 5:00-6:00 pm

- P1.1 Intentional Iron Diffusion in B-Ga₂O₂ (Bray)
- Demonstration of Cul as a P-N Heterojunction to β-Ga₂O₂ (Gallagher)
- Synchrotron X-Ray Topography Observation of Defects in Vertical-Bridgman-Grown B-Ga,O, Single Crystal (Kasu)
- High-Performance Si/ B-Ga₂O₃ pn Heterojunction Diodes (Kim)
- Demonstration of (AlGa) O_a-channel MOSFETs (Okumura)
- High-Performance Solar-Blind Lateral Schottky Photodiode Based on Heteroepitaxial]e-Ga,O, Thin Film (Qin)
- Ga₂O₂ Field Effect Transistors on Grown on Sapphire by MOCVD (Razeghi)
- Enhanced III-Nitride Quantum Wells Grown on Conductive, Transparent (-201)- β-Ga₂O₃, for High Efficiency Vertical Visible
- and UV Light-Emitting Devices (Rogan)
- Highly Rectifying Contacts on (In,Ga),O, Thin Films Grown by PLD (Splith)
- Metal/BaTiO_a/ B-Ga_aO_a Dielectric Heterojunction Diode with 5.7 MV/cm
- High-Performances Self-Powered Deep Ultraviolet Photodetector Based on B-Ga₂O₂/4H-SiC Heterojunction (Yu)
- P1.12 Impact of Flat-Band Shift in the HfAIO/Ga₂O₃ MOSCAPs with Different
- P1.13 Electrical Property of α-Ga₂O₃ Films on m-Plane Sapphire Substrates (Akaiwa)
- P1.14 MOCVD Growth of B-(Al, Ga,,,),O, Thin Films on Ga,O, Substrates (Bhuiyan)
- Effects of Nano Epitaxial Lateral Overgrowth on Growth of α-Ga₂O₃ by Halide Vapor Phase Epitaxy (Cha)
- MOCVD Growth of ε- Ga₂O₃ Thin Films on Si(111) Substrate with AIN Buffer
- Growth of High-Crystalline-Quality α- Ga₂O₂ Epilayer Grown by Halide Vapor-Phase Epitaxy Using Pulse Oxygen Flow Mode (Jeon)
- P1.18 Ga-Etching of Different B-Ga₂O₂ Surface (Mazzolini)
- P1.19 Excitonic Emission Observed in Mist CVD Grown α- Ga₂O₂ (Muazzam)
- Ga₂O₃ on Si(100) Based Vertical Schottky UV-C Photodetectors by Molecular Beam Epitaxy (Mukhopadhyay)
- MBE Growth and Characterization of B- Ga₂O₂/NbNx Heterostructures on SiC
- Biaxial-Textured Epitaxial Gallium Oxide Thin Films on Low Cost, Flexible Metal Substrates (Sun)
- P1.23 Growth of High Quality α -Ga₂O₃ on Sapphire Substrate by Mist-CVD (Yang)
- Mobility Calculation of the Gallium Oxide Double-Gate Metal-Insulator-Semiconductor Structure (Cha)
- A Computational Survey of Wide Band Gap Materials for Next-Generation Power Electronic Devices Beyond Ga₂O₃ (Gorai)
- Thermodynamic Study on Halide Vapor Phase Epitaxy of Ga,O, Using GaCl or GaCl, as a Group-III Precursor (Kamo)
- Stress/Strain Behavior of Infrared-Active Phonons and Phonon Deformation Potentials in β-Ga_oO_o (Korlacki)
- P1.28 Epsilon-Gallium Oxide-Based Ferroelectric Semiconductors (Mishra)
- P1.29 Temperature-Dependent Thermal and Thermoelectric Properties of β-Ga₂O₆. Thin Films and Bulk Substrates (Handwerg)
- Electron Diffraction and Cathodoluminescence Imaging of β-Ga₂O₂ Using a Scanning Electron Microscope (Gunasekar)
- Atomic Scale Investigation of Substitutional Alloying in B-(In Ga, J)202 and β -(Al_xGa_{1.x})₂O₃ (Johnson)
- P1.32 Study of Defects in β-Ga₂O₃ by Steady-State Capacitance Spectroscopy (Li)
- Properties of Epitaxial B-Ga₂O₂ films Determined by Long-Wavelength Spectroscopic Ellipsometry and Their Relation to Strain (Mock)
- Diffusion of Hydrogen in B-Ga₂O₂
- and Interplay with Gallium Vacancies (Reinertsen)
- Multi-Photon Photoluminescence Behaviors of $\text{B-Ga}_2\text{O}_3$ as Probed by Wavelength-Dependent Nonlinear Optical Spectroscopy (Song)
- Utilizing Steady-State Photocapacitance Measurements to Study Migration/Passivation of Defects in B-Ga₂O₂ (Zimmermann)
- Deep Traps in N-Type α -Ga $_2$ O $_3$:Sn Films Grown by HVPE on (0001) Sapphire Vladimir I. Nikolaev, Ioffe Institute & Perfect Crystals LLC

POSTER SESSION II

Wednesday, 5:00-6:00 pm

- Crucible Material Alloys Based on Platinum for VB B-Ga₂O₂ Crystal Growth in Ambient Air (Hoshikawa)
- Relation Between Emission Spots and Reverse Leakage Current in HVPE (001) B-Ga, O, Schottky Barrier Diodes (Kasu)
- Developments in Bulk Growth Of β -Ga $_2$ O $_3$ via the Czochralski Method and Fabrication of (010) Epi-Ready Substrates (*Lindsey*)
- Switching Characteristics of PFC Circuit Using B-Ga, O, Schottky Barrier
- Schottky Barrier Height Engineering in B-Ga, O, Using a Dielectric Interlayer
- Large Area Nanometer-Thin Ga, O, Films from Gallium-Melt Exfoliation (Cooke)
- Role of Oxygen Vacancies
- and Interface States in High Quality Schottky Contacts to β-Ga₂O₂ (Hou)
- Electrical Behavior of (100) ß-Ga₂O₂ Schottky Diodes with Different Schottky
- Ultraviolet-C p-NiO/n-Ga₂O₂ Photodetectors Grown on c-Plane Sapphire by Pulsed Laser Deposition (Li)
- Band Gap Tunable 6-(Al, Ga,,),0,3 Thin Film Achieved by Ultra-High Temperature Annealing (Liao)
- Impact of Electron-Beam Irradiation on the Performance of B-Ga,O, Schottky Barrier Diodes (Lin)
- P2.12 p-NiO/n-Ga₂O₂ Heterojunction for Power Electronics (Lu)
- High Responsivity Tin Alloyed Ga₂O₃ Solar Blind Photodetectors on B-Ga₂O₃ Substrates by Molecular Beam Epitaxy (Mukhopadhyay)
- Optical Float-Zone Grown Bulk B-Ga₂O₂-Based Linear MSM Array of UV-C Photodetectors (Prativush)
- LPCVD-Grown B-Ga₂O₂-Based UV-C Photodetectors:
- Effect of Oxygen Flow (Pratiyush)
- B-Ga₂O₂ Solar-Blind Photodetector on Thermal Pretreated c-Plane and r-Plane Sapphire Substrates by Pulsed Laser Deposition (Shalabi)
- Large Area (7mmx7mm) Schottky Solar-Blind Photodiode with a Benchmark Response Speed (Yana)
- Effect of Inlet Position and Flow Velocity in Hot-Wall Mist Chemical Vapor Deposition During Ga, O, Thin Film Growth (Bae)
- Carrier Compensation and Scattering Mechanism in Laser-MBE Grown Degenerate Si-Doped Ga₂O₃ (-201) Homoepilayers (Chen)
- Heteroepitaxy of ε- Ga₂O₂ Thin Films by Metal Organic Chemical Vapor
- Effect of Plasma Treatment of GaN Templates on ε- Ga₂O₃ Epitaxial Growth by Mist Chemical Vapor Deposition (Ito)
- Comparison of Ga₂O₃ Thin Films on c-Plane
- and m-Plane Sapphire Substrates Grown by Mist CVD (Kim)
- Gallium Oxide Deposition by Atomic Layer Deposition and Improved Electrical Properties by Annealing (Kroencke)
- Growth of B-Ga₂O₂ Layer on B-Ga₂O₂(-201) and c-Plane Sapphire Substrate by HVPE (Lee)
- Morphology Effect of Different Unintentional Substrate Offcuts on (010) B-Ga₂O₃ Films Homoepitaxially Grown by MBE (Mazzolini)
- Investigation of Thermal and Chemical Stabilities of (001), (010),
- and (-2 01) B-Ga₂O₃ Substrates in a Flow of Either N2 or H2 (Togashi)
- P2.27 High Temperature LPCVD Growth of B-Ga₂O₂ Films (Zhang)
- P2.28 Technoeconomic Analysis of Gallium Oxide Wafer Cost (Reese)
- Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors
- Evolution and Recovery of Ion Implantation-Induced Damage Zone in β-Ga₂O₃ P2.30
- P2.31 Optical Absorption of Impurities in Doped Ga₂O₃ (Bhandari)
- P2.32 Insights on Oxygen Vacancies in G₂O₂ Epitaxial Films (Freitas)
- Nanoscale Studies of Schottky Barrier Contacts on (-201) B-Ga₂O₂ Using Ballistic Electron Emission Microscopy (BEEM) (Galiano)
- and Thermal Anneal Impact on Ga, O, Deep Level Defects (Gao)
- Thermal Conductivity of B-Ga₂O₂ Thin Films Grown by Molecular Beam Epitaxy
- Deep Level Traps in B-Ga₂O₃ Studied by Thermally Stimulated Current (TSC) Spectroscopy (Wang)

PROGRAM **OVERVIEW**

August 12-15, 2019

N/I		Λ	V

12:00 pm − 6:30 pm Registration

PreSessions

1:00 pm − 2:00 pm

Perspectives on Ga₂O₃ Application
Vivek Mehrotra, Teledyne

GOX Special Session

Kelson Chabak, Air Force Research Laboratory; Jim Speck, University of California, Santa Barbara; Mike Scarpulla, The University of Utah; Michael Thompson, Cornell University; Shin Mou, Air Force Research Laboratory

5:30 pm − 6:30 pm

Welcome Reception

TUESDAY

8:40 am KEY 1.1 ▲ Masataka Higashiwaki, National Institute of Information and Communications Technology

Homoepitaxial β- Ga₂0₃ Thin Films Growth by MOCVD

Using Various Oxygen Sources
Andrei Osinsky, Agnitron Technology

10:00 am EPI 1.3 High Electron Mobilities

Zixuan Feng, The Ohio State University

MOVPE Growth of Homoepitaxial β- Ga,0, Films Using Far

10:15 am EPI 1.4 Injection Showerhead

Praneeth Ranga, The University of Utah

10:30 am Break

Integration of Corundum-Structured Oxides for Device
10:45 am EPI 2.1 Tailoring
Shizuo Fujita, Kyoto University

11:05 am EPI 2.2 Epitaxial Stabilization of κ-(In $_{s}Ga_{1,x}/_{2}O_{3}$ and κ-(Al $_{s}Ga_{1,x}/_{2}O_{3}$ Layers up to xIn \le 0.28 and xAl \le 0.68 by Tin-Assisted VCCS-PLD Max Kneiß, Universität Leipzig

Ternary Orthorhombic $(\ln_x Ga_{1,x})_2 O_3$ 11:20 am EPI 2.3 and $(Al_x Ga_{1,x})_2 O_3$ Thin Films: Growth and Material Properties Anna Hassa, Universität Leipzig

11:35 am EPI 2.4 Epitaxial Growth of α -($\ln_x A I_{1-x}$) $_2 O_3$ Alloy Films by Mist Chemical Vapor Deposition Daisuke Tahara, Kyoto Institute of Technology

Ga₂O₃ Phase Control and Heterojunctions Using
11:50 am EPI 2.5 Plasma-Enhanced Atomic Layer Epitaxy
Virginia D. Wheeler, U.S. Naval Research Laboratory

Homoepitaxial Films
Kohei Sasaki, Novel Crystal Technology, Inc.

Near Unity Ideality Factor for Sidewall Schottky Contacts
1:55 pm DEV 1.2 Achieved Through Anisotropic Wet Etching of β- Ga₂O₃
Yuewei Zhang, University of California, Santa Barbara

Influence of Voltage, Temperature
2:10 pm DEV 1.3 ▲ and Radiation Damage on Vertical Geometry Ga₂O₃ Rectifiers *Jiancheng Yang, University of Florida*

2:30 pm DEV 1.4 Investigation of Interfacial Evolution at Beta Phase Gallium
Oxide Titanium/Gold Ohmic Junctions
Ming-Hsun Lee, University of Michigan

Field-Plated Lateral ß- Ga₂O₃ Schottky Barrier Diode with High 2:45 pm DEV 1.5 Reverse Blocking Voltage of More Than 3 kV Hu Zhuangzhuang, Xidian University

3:00 pm DEV 1.6 High Temperature (> 350 °C) Schottky Contacts on B- Ga $_2\text{O}_3$ Caixia Hou, University of Canterbury

TUESDAY

CONTINUED A Invited Talk

3:15 pm	DEV 1.7	Dual-Modality Solar-Blind Ultraviolet Light Sensing by β- Ga ₂ O ₃ Nanoelectromechanical Transducer Xu-Qian Zheng, Case Western Reserve University
3:30 pm		Break
3:45 pm	DEV 2.1	ß- Ga ₂ O ₃ Delta-Doped Field Effect Transistors with Cutoff Frequency of 27GHz Zhanbo Xia, The Ohio State University
4:00 pm	DEV 2.2	Ga ₂ O ₃ MOSFETs with (AlGa) ₂ O ₃ Back Barrier Takafumi Kamimura, National Institute of Information and Communications Technology
4:15 pm	DEV 2.3	Self-Aligned Gate Thin-Channel B- Ga ₂ O ₃ MOSFETs Kyle J Liddy, KBRwyle
4:30 pm	DEV 2.4	Nearly-Ideal Characteristics of SiO $_2$ /B- Ga $_2$ O $_3$ MOS Capacitors Fabricated with High-Temperature O $_2$ -Annealing Koji Kita, The University of Tokyo
4:45 pm	DEV 2.5	Development of Si: α -(Al $_s$ Ga $_{1-x}$) $_2$ O $_3$ / α -(Cr $_y$ Ga $_{1-y}$) $_2$ O $_3$ High Electron Mobility Transistors Giang T. Dang, Kochi University of Technology
5:00 -	6:00 pm	Poster Session I and Reception
7:00 -	9:00 pm	Rump Session: Is Ga_2O_3 Too Hot to Handle?

WEDNESDAY

8:00 am - 5:00 pm Registration

▲ Invited Talk

8:30 am		Welcome Back
8:40 am	KEY 2.2 ▲	${\rm Ga_2O_3}$ Power Schottky Barrier Diodes and Transistors: Design Principles and Experimental Validation Grace H. Xing, Cornell University
9:20 am	EPI 3.1 ▲	Growth of Gallium Oxide by HVPE Yoshinao Kumagai, Tokyo University of Agriculture and Technology
9:40 am	EPI 3.2 ▲	Halide Vapor Phase Epitaxy of Meta-Stable Ga ₂ O ₃ Yuichi Oshima, National Institute for Materials Science
10:00 am	EPI 3.3	Influence of Growth Temperature and Input VI/III Ratio on Crystallinity in Homoepitaxy of 8-Ga ₂ O ₃ by Halide Vapor Phase Epitaxy Ken Goto, Tokyo University of Agriculture and Technology
10:15 am	EPI 3.4	Single-Phase α -(Al Ga, $_{x}$) $_{y}$ O $_{y}$ Films Grown on m-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy Riena Jinno, Cornell University
10:30 am		Break
10:45 am	EPI 4.1 ▲	Thermodynamics and Suboxide-Related Kinetics during Molecular Beam Epitaxy of Ga ₂ O ₃ : Catalysis, Faceting, and Phase Formation Oliver Bierwagen, Paul-Drude-Institut für Festkörperelektronik
11:05 am	EPI 4.2	High Electron Density B -(Al _{0,18} Ga _{0,82}) ₂ O ₃ /Ga ₂ O ₃ Modulation Doping with Ultrathin (1 nm) Spacer Layer Nidhin Kurian Kalarickal, The Ohio State University
11:20 am	EPI 4.3	Acceptors in (010) ß-Ga ₂ O ₃ Grown by Plasma-Assisted Molecular Beam Epitaxy Akhil Mauze, University of California, Santa Barbara
11:35 am	EPI 4.4	Efficient Suboxide Sources for Oxide MBE Using the Sublimation of SnO ₂ +Sn and Ga ₂ O ₃ +Ga Mixtures Georg Hoffmann, Paul-Drude-Institut für Festkörperelektronik
11:50 am	EPI 4.5	Substrate-Orientation Dependence of In-Mediated Metal-Exchange Catalysis During B- Ga ₂ O ₃ Homoepitaxy by MBE Piero Mazzolini, Paul-Drude-Institut für Festkörperelektronik
12:10 pm – 1:35 pm		Lunch Break (Lunch is not provided)
1:35 pm	MOD 1.1 ▲	First-Principles Studies of Ga ₂ O ₃ : Defects, Doping, and Heterostructures Chris G. Van de Walle, University of California, Santa Barbara
1:55 pm	MOD 1.2	Ab-initio Study of the Effects of Stress on the Low Field Electron Mobility in β-Ga ₂ O ₃ Ankit Sharma, University at Butfalo

WEDNESDAY

CONTINUED A Invited Talk

2:10 pm	MOD 1.3	Calculated Electron Paramagnetic Resonance Parameters for Defects in B-Ga,O ₃ and Related Materials Dmitry Skachkov, University of Florida
2:25 pm	MOD 1.4	Theoretical Investigation of Infrared Photodetection in Gallium Oxide/Aluminum Gallium Oxide Quantum Well Structures Joseph E Lyman, The University of Utah
2:40 pm	MOD 1.5▲	Ab Initio Electron Transport in Monoclinic β-Ga ₂ O ₃ Uttam Singisetti, University at Buffalo
3:00 pm		Break
3:15 pm	DEV 3.1	Orientation Dependence in Ga ₂ O ₃ Vertical Fin-Channel Power Devices Wenshen Li, Cornell University
3:30 pm	DEV 3.2	Etch Damage Control in Deep-Recessed 8-Ga ₂ O ₃ Field Effect Transistors Chandan Joishi, The Ohio State University; Indian Institute of Technology Bombay
3:45 pm	DEV 3.3	Lateral 750 V Ga ₂ O ₃ MISFET with 100 MW/cm ² Power Figure-of-Merit Kornelius Tetzner, Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
4:00 pm	DEV 3.4	Ga ₂ O ₃ Field Plated MOSFETs with Ohmic Cap Layer Ke Zeng, University at Buffalo
4:15 pm	DEV 3.5	Comparison Between Lateral and Vertical ${\rm Ga_2O_3}$ Isolation Structures Carlo De Santi, University of Padova
4:30 pm	DEV 3.6	Static and Switching Characteristics of Enhancement-Mode 8-Ga ₂ O ₃ MOSFET Hang Dong, Institute of Microelectronics, Chinese Academy of Sciences
4:45 pm	DEV 3.7	Hydrogen Environment Anisotropic Thermal Etching Characteristics of (010) B-Ga ₂ O ₃ and Fabrication of High Aspect Nanowall Structure <i>Yuki Ooe, Sophia University</i>
5:00 pm -	6:00 pm	Poster Session II and Reception
6:45 pm -	8:45 pm	Dinner Reception at The Ohio State Faculty Club

THURSDAY

8:00 am - 2:00 pm Registration

Invited Talk

8:30 am		Welcome-Last Day
8:40 am	KEY 3.3 ▲	Recent Progress in Edge-Defined Film-Fed Growth and Halide Vapor Phase Epitaxy of β- Ga_2O_3 for Power Device Applications Akito Kuramata, Novel Crystal Technology, Inc.
9:20 am	BULK 1.1▲	Czochralski-Grown Bulk ß-Ga ₂ O ₃ Single Crystals Doped with Mono-, Di-, Tri-, and Tetravalent Ions, and VGF-Grown Bulk ZnGa ₂ O ₄ Single Crystals Zbigniew Galazka, Leibniz-Institut für Kristallzüchtung
9:40 am	BULK 1.2	Phonon Order and Longitudinal-Optical Phonon Plasmon Coupling in B-Ga ₂ O ₃ Mathias M. Schubert, University of Nebraska-Lincoln
9:55 am	BULK 1.4	Bulk ß-Ga ₂ O ₃ Single Crystal Growth Interface Control and In-Plane Polarization Wenxiang Mu, Shandong University
10:10 am		Break
10:25 am	TRN 1.1	Thermal Characterization of Delta-Doped B-Ga ₂ O ₃ MESFET Nitish Kumar, Georgia Institute of Technology
10:40 am	TRN 1.2	Thermal Boundary Conductance Across Heterogeneous Ga,O,, Diamond Interfaces Zhe Cheng, Georgia Institute of Technology
10:55 am	TRN 1.3	Integration of Thinned ${\rm Ga_2O_3}$ with Single Crystal 4H-SiC for Thermal Management of ${\rm Ga_2O_3}$ Power Devices Jacob H. Leach, Kyma Technologies

THURSDAY

CONTINUED A Invited Talk

11:10 am	TRN 1.4	Characterization of Annealing-Induced Conductivity Changes in (-201) B-Ga ₂ O ₃ Marko J. Tadjer, U.S. Naval Research Laboratory
11:25 am	TRN 1.5	Orientation-Dependent Electrical Performance of B-Ga ₂ O ₃ MOSFETs Taylor Moule, University of Bristol
11:40 am	TRN 1.6	Investigation of Hydrogen in MOCVD B-Ga ₂ O ₃ Adam Neal, Air Force Research Laboratory
11:55 am -	1:25 pm	Lunch Break (Lunch is not provided)
1:25 pm	CHA 1.1	Full-Bandgap Investigation of Electronic Defect States in High-Mobility MOCVD-Grown (010) B-Ga ₂ O ₃ Hemant Jagannath Ghadi, The Ohio State University
1:40 pm	CHA 1.3	Comparison of the Electrical Properties of B-Ga ₂ O ₃ Layers Homoepitaxially Grown by MOVPE and HVPE Andreas Fiedler, Leibniz-Institut für Kristallzüchtung
1:55 pm	CHA 1.4	Characteristics of Terahertz Emissions from (010) and (-201) Surfaces of 8-Ga $_2$ O $_3$ Excited by Femtosecond Laser Pulses Kawayama Iwao, Ōsaka University
2:10 pm	CHA 1.5	Electron Paramagnetic Resonance and Charge State Transition Levels of Cobalt in β-Ga ₂ O ₃ Klaus Irmscher, Leibniz-Institut für Kristallzüchtung
2:25 pm	CHA 1.6	Examination of Dielectric Function Tensor (1.5 eV to 9.0 eV), Anisotropy, and Band-to-Band Transitions for Monoclinic F(Al, Ga, $_{\rm u}$)/0 (x \leq 0.21) Films Using Generalized Spectroscopic Ellipsometry Matthew Hilfiker, University of Nebraska-Lincoln
2:40 pm		Break
2:55 pm	CHA 2.1	Direct Determination of Point Defects and Complexes in B-Ga ₂ O ₃ Using Scanning Transmission Electron Microscopy Jinwoo Hwang, The Ohio State University
3:10 pm	CHA 2.2	Direct Imaging of Surface Segregation of Tin Dopants and Preferential Dopant Sites in B- (Al _{0.15} Ga _{0.85}) ₂ O ₃ Films Celesta S. Chang, Cornell University
3:25 pm	CHA 2.3	Observation and Classification of Dislocations in EFG-Ga ₂ O ₃ Substrates Yongzhao Yao, Japan Fine Ceramics Center
3:40 pm	CHA 2.4	Leveraging Three Dimensional Chemical Imaging to Investigate Structure and Chemistry of β - (Al $_x$ Ga $_{_{1}}$,) $_2$ O $_3$; Towards an Ultra-High Band Gap Material Jith Sarker, University at Buffalo-SUNY
3:55 pm	CHA 2.5	Optical Transitions in B-Ga ₂ O ₃ Single Crystal Studied by Electroreflectance Measurements Takeyoshi Onuma, Kogakuin University
4:10 pm	CHA 2.6	IR-VUV Dielectric Function of Kappa-(In,Al,Ga) $_2$ O $_3$ Thin Films Chris Sturm, Universität Leipzig
4:25 pm -	4:55 pm	Closing

IWGO is managed by

