SYMPOSIUM D

Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics

April 23 – 27, 2000

Chairs

Karen Maex
IMEC
Leuven, B-3001 BELGIUM
32-16-281211

Young-Chang Joo
School of MS&E
Seoul National Univ
Rm 32-202
Seoul, 151-742 KOREA
82-2-880-7514

Gottlieb S. Oehrlein
Dept of Matls & Nuclear Engr
Inst for Plasma Research
Univ of Maryland
College Park, MD 20742-2115
301-405-8931

Shinichi Ogawa
ULSI Process Tech Dev Ctr
Matsushita Electronics Corp
Semiconductor Co
Kyoto, 601-8413 JAPAN
81-75-662-8911

Jeffrey T. Wetzel
Interconnect Div
Sematech
Austin, TX 78741-6499
512-356-3402

Symposium Support
Dow Chemical Company
Dow Corning Corporation
Novellus Systems, Inc.
Sematech

Proceedings published as Volume 612
of the Materials Research Society
Symposium Proceedings Series.

*Invited paper
TUTORIAL

ST D-G-H: Cu INTERCONNECTS: WHAT ARE THE ISSUES?
Sunday, April 23, 2000
10:00 a.m. - 4:45 p.m.
Golden Gate B2 (Marriott)

The implementation of Cu in the metallization process of integrated circuits has redirected many research and development projects in universities, research institutes, and industry. A vast amount of data is being collected on the physical and mechanical properties of Cu thin films and lines, on various aspects of its polycrystalline nature. The implementation of Cu also goes hand in hand with the changeover from the physical vapor deposition technique to electroplating of the metal and with the introduction of chemical-mechanical polishing instead of the classical metal dry etch process. The research related to these new process steps has created a need to get more insight into other aspects of materials science.

The aim of this tutorial is to provide an interdisciplinary introduction to the latest evolution in fields relevant to Cu interconnects. An overview will be given of the state of the art of Cu metallization for high performance. Specific technology. The importance of electrochemistry for the understanding of electrochemical deposition will be highlighted, and possible mechanisms of Cu corrosion will be discussed.

Instructors:
Robert Rosenberg, IBM T.J. Watson Research Center
Tom Moffatt, NIST
Vlasta Brusle, Cabot Corporation

SESSION D1: MECHANICAL PROPERTIES
Monday, April 24, 2000
Golden Gate B2 (Marriott)

8:30 AM *D1.1
8:45 AM *D1.2
9:00 AM D1.1
THE USE OF THE FOUR-POINT BENDING TECHNIQUE FOR DETERMINING THE STRENGTH OF LOW K DIELECTRIC/BARRIER INTERFACE. Ting Y. Tsai, AMD/Motorola Alliance, Austin, TX, J.J. Lee, Bradley Ekstrom, Greg Brackdellman, Stan Filipiak and Cindy Goldberg, Motorola Inc., Austin, TX.

This investigation explored the applicability of the four-point bend technique for determining the adhesion strength of various low dielectric constant materials in contact with different barrier layers. Time of flight SIMS (TOF SIMS) was used for surface chemical analysis of the delaminated interfaces. The effect of annealing on mechanical strength was coupled with chemical analysis to discern the adhesion properties of different low k/barrier systems. Interfacial layer formation was associated with degraded adhesion characteristics in specific cases. The four-point bend analysis was successfully used to evaluate and compare low k dielectric/barrier stacks. Mechanisms for adhesion failure were proposed for a variety of materials by coupling the mechanical testing results with TOF SIMS.

9:15 AM D1.3
THE EFFECT OF FATIGUE ON THE ADHESION AND SUBCRITICAL DEBONDING OF BENZOCYCLOPENTADIENE/SILICON DIOXIDE INTERFACES. Jeffrey M. Stodggrass, Dimitrios Pantelis, John C. Breman and Reinhold H. Draskward, Stanford University, Department of Materials Science and Engineering, Stanford, CA.

The effect of fatigue on microelectronic thin film interfaces has until now been difficult to quantify. Most industrial fatigue testing uses HAST (Highly Accelerated Stress Testing) protocols. HAST inherently convolutes the effects of mechanical fatigue and the environment. Our work focuses on isolating the deleterious effects of mechanical fatigue on interfaces, which we have found to be substantial. In this study, the integrity of a low-k polymer interface involving benzocyclobutene (BCB) and silicon was examined under a variety of loading conditions. First, critical (fast fracture) adhesion values were measured using standard interface fracture mechanics geometries. Experiments were then conducted to measure the fatigue debond growth rate as a function of the range of strain energy release rate. Generally, our results show that even under room temperature conditions, measurable debond growth occurs at driving forces that are considerably lower than those necessary to cause critical debonding. Results will be presented detailing the effects of parameters such as interface chemistry (adhesion promoters), polymer cure state, and polymer layer thickness on the resistance to fatigue debonding. Strategies for increasing resistance of dielectric interfaces to fatigue debonding will also be outlined. Finally, high-resolution XPS studies which fully characterize the debond path in these layered systems are presented.

9:30 AM D1.4

The integration of Cu and low dielectric constant (k) materials in back end processing will replace aluminum and silicon oxide by offering reduced signal propagation delay, crosstalk and power dissipation. An important issue regarding reliability is the adhesion between metal (barrier) and low k material. In this work, the adhesion strength is determined quantitatively by shear testing. In this method, barrier and Cu metal are deposited on the dielectric Cu is deposited by electroplating on a patterned Cu seed layer. Lithography and wet etching are used to remove the Cu seed layer and barrier selectively to obtain rectangular and circular test structures with a different area and a height of 1500. During shear testing, a needle pushes laterally against the test structure until failure occurs at the polymer-metal interface. The needle force is monitored continuously. The ratio of the maximum applied force and the area of the test structure is defined as the adhesion force. Two different advanced organic low-k materials are evaluated: an inorganic hydrogenated soxide (k=3.60) and a polyvinylidene ether-based polymer (k=2.84). Plasma deposited silicon oxide is used as a reference. Ti/TiN, Ta/TaN and Cu are used as barrier metals. Both the dielectric-Cu and the dielectric-barrier/metal interfaces are studied. The influence of different heat treatments in a nitrogen ambient on the adhesion strength will be discussed. X-ray photoelectron spectroscopy can be used to study the failed interface. In order to enhance the adhesion between dielectric and Cu/barrier, a pretreatment of the dielectric surface is performed. The pretreatment consists of an oxygen or a fluorine containing plasma. Plasma treatments reflect also the modification of the dielectric surface during dry etching. In a second part of the work the adhesion strength between Cu and the different barriers is measured and discussed.

9:45 AM D1.5
ADHESION IMPROVEMENT IN COPPER INTERCONNECT TECHNOLOGY USING COPPER MAGNESIUM ALLOYS. G. Brackdellman, R. Venkatesan, M. Herrick, R. Cole, D. Clegg, Motorola Inc., Advanced Products Research and Development Laboratory, Austin, TX.*Motorola Inc., Final Manufacturing Technology Center, Austin, TX.

Copper has been selected as the interconnect material for the latest technologies due to its lower resistivity and higher electromigration resistance as compared to Al metallization. However, a number of issues needed to be resolved for reliable and defect-free manufacturing. One issue was discovered during packaging of Cu chips. The chip and the bump-to-chip interfaces have to remain intact when testing the joint quality using the die pull test. However, using pure Cu it was observed that a large fraction of the bumps fail at the passivation/Cu interface. This is due to the inherently poor adhesion of Cu to oxides and nitrates. To improve the adhesion between Cu and SiN, small amounts of Mg were incorporated into the Cu interconnect structure. In this process, the patterned seed layer was CuMg rather than the pure Cu normally sputtered. During the following process steps, the Mg diffuses to the surface and reacts with SiN, thereby providing good adhesion. Using CuMg, a reliable package was assembled achieving zero failures in the die pull test for Cu integration. In addition, characteristics of the CuMg films have been studied in depth. Analyzing the diffusion behavior of Mg through pure Cu showed that Mg readily diffuses and agglomerates at the surface where it reacts with residual oxygen. Furthermore, the adhesion behavior was characterized by studying the wetting behavior of Cu and CuMg on SiO2. After annealing the films, it was observed that pure Cu dewetted, forming islands on the SiO2 surface, whereas the CuMg films stayed smooth and no significant increase in roughness was observed. This presentation will review our work in improving packaging reliability by improving the Cu-SiN adhesion and will also show detailed data on Cu alloying with Mg.

10:30 AM D1.6
STABLE DIELECTRIC FRACTURE AT INTERCONNECTS FROM THERMAL AND ELECTROMIGRATION STRESSES. Robert P. Cook, University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN.
Substantial stresses develop in microelectronic interconnection structures from thermal expansion mismatch between the insulating dielectric and the conducting lines (and semiconductor substrate) and from electromigration within an interconnecting line constrained by the dielectric. Fracture in dense silica-based dielectrics from these stresses is usually rare; thermal expansion mismatches with both the lines and substrate leave the dielectric in compression and electromigration stresses, although generating tension in the dielectric, are not large enough at conventional current densities and line dimensions. However, advanced quartz-silicon low dielectrics have mechanical properties significantly different from silica such that both thermal and electromigration stress levels are expected to exceed those for fracture. In this study, the conditions for cracking in the dielectric adjacent to an interconnecting line examined in a series of thermal and electromigration stress tests. Modeling the dielectric as an elastomeric-plastic material. Attention is focused on the separate conditions for crack nucleation, initiation to stable lengths and propagation on the threshold level of thermal mismatch and current density for each. Particular consideration is given to the low-k siliconoxide-based spin-on-glass materials.

11:00 AM DL7

NANOSCALE ELASTIC IMAGING OF ALUMINUM/LOW-K DIELECTRIC/INTERCONNECT STRUCTURES. Robert E. Geer, G.S. Shelton, University at Albany, State University of New York, Albany, NY; Oleg Kolesov, G. Andrew Briggs, Department of Materials, Oxford University, Oxford, UNITED KINGDOM.

One of the most difficult challenges in low-k integration in IC processing concerns the significant mismatch of mechanical properties between metals and most low-k dielectrics. Previously, it has not been possible to image the nanometer length scale that exists between mechanical properties near dielectric/filler and metal/interfacial metal interfaces. Such an ability would greatly facilitate thermal and bias-stress reliability analysis of single and multi-level low-k metallization structures by localizing variances in local metallic modulus due to local compositional variations, stress concentration, etc. Pursuant to this, we report the development of a new technique to image such properties based on ultrasonic force microscopy (UFM). UFM has been used to obtain nanoscale elastic mapping of low-k interconnect structures consisting of chemical vapor deposited (CVD) aluminum in a benzocyclobutene low-k dielectric matrix. A titanium nitride liner is deposited prior to aluminum CVD. Analyses of these images reveals an elastic modulus gradient in the polymer matrix near the dielectric/filler interface leading to an increase in polymer stiffness near the metal line. Spectroscopy studies of the filler/polymer interfaces reveal that this variation in the mechanical response of the polymer originates in the compositional modification of the polymer surface upon etch processing. Thermal failure studies are also presented relating these local mechanical variations at the polymer/filler interface to failures resulting from local coefficient of thermal expansion (CTE) mismatches.

11:15 AM DL8

CONCENTRATION AND STRAIN EVOLUTION IN PASSIVATED Al(0.5 wt. % Cu) CONDUCTOR LINES DURING ELECTRO-MIGRATION FROM IN-SITU X-RAY MICROBEAM FLUORESCENCE AND DIFFRACTION. H-K. Kuo, G.S. Cargill, III, Dept. of Materials Science and Engineering, Lehigh University, Bethlehem, PA; C-K. Hu, IBM Research, Yorktown Heights, NY.

We have used x-ray microbeam fluorescence and diffraction in situ measurements of Cu concentration and strain during electromigration for passivated 10 µm-wide, 200µm-long Al(0.5 wt. % Cu) conductor lines. These measurements show development of Cu composition gradients during d.c. electromigration, decay of composition gradients after halting current flow, reversal of composition gradients after reversal of current, and steady-state composition gradients on the magnitude of current flow. Results from real-time measurements of strain developed in the conductor lines during electromigration will also be discussed. These composition and strain measurements are a continuation of experiments for which initial results were reported in Symposium M of the Spring 1998 MRS meeting (H-K. Kuo, G.S. Cargill III, K. J. Hwang, A. C. Ho, P-C. Wang and C-K. Hu, "In-Situ X-Ray Microbeam Cu Fluorescence and Strain Measurements on Al(0.5 wt. % Cu) Conductor Lines During Electromigration," MRS Symp. Proc. (1999)).

11:30 AM DL9

PASSIVATION FILM CRACKING IN INTERCONNECT STRUCTURES CAUSED BY TEMPERATURE CYCLING: A NEW MECHANISM M. Huang, Z. Sun, Mechanical and Aerospace Engineering and Materials Science, Princeton University, Princeton NJ; Q. Ma and H. Fujimoto, Intel Corporation, Santa Clara, CA.

Temperature cycling has long been used as an accelerated reliability test to qualify new electronic products. Many commonly observed failure modes, however, are not easily understood that the extrapolation of the test results to service lifetime is empirical, loosely based on historical records of similar products. This lack of mechanic understanding is particularly disconcerting when new interconnect materials are being explored. We have initiated a program to study mechanisms of failure modes under temperature cycling. In this talk, we present our recent study on the cracking in the AlN films near the film's corner of a flip-chip package. A new mechanism is discovered. We show that the cyclic temperature, coupled to the shear stress at the die corner, causes the interconnect pads underneath the AlN films to undergo plastic necking. Consequentially, in the AlN films the stress builds up as the temperature cycles, leading to cracks. Implications for design rules and qualification tests are discussed.

11:45 AM DL10

X-RAY MICROTOPOGRAPHY FOR VISUALIZATION OF LOW-K DIELECTRIC/INTERCONNECT STRUCTURES. J.L. Jordan-Sweet, E.G. Linger, C-K. Hu, IBM Research Division, Yorktown Heights, NY.

X-ray microtomography has been developed and employed to characterize the stress transfer between metal thin-film features and their single-crystal substrates. This system is equipped with a tapered glass capillary for condensing x-rays, precision sample translation stages (±1 µm), high-power microscopes, and detectors for collecting diffraction and fluorescence signals for topographic and elemental information. Due to its excellent strain sensitivity (~10^-6) and diffraction signal from substrates, this technique is well suited for real-time probing of minute strain changes at the film/substrate interface resulting from the stress in thin-film features. Local stress distributions in metallization structures can be measured with micron-scale spatial resolution. The description of x-ray microtomography to the study of electromigration in aluminum-based conductor lines.

SESSION D2: INTERCONNECT RELIABILITY

Monday Afternoon, April 24, 2010

Golden Gate B2 (Marriott)

1:30 PM **D2.1**

Copper metallization has been implemented for BEOL interconnects, and has been found due to its excellent conductivity which is required for sub-quarter micron high performance products. The process integration of copper metallization will be reviewed. The key challenges on copper metallization will be reviewed. At the critical concern on electromigration, stress migration, and studies of copper metallization on electrical and thermal activation energies for current and temperature acceleration dependence. CMOS technology with copper interconnects and copper diffusion were measured at the minimum pitch of 0.63 µm, 1.80 volts. The integrated copper hardware has been successfully tested for reliability. The electromigration data of copper which was deposited by different techniques such as Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), and Electro-Plated (EP) copper integrated with dual damascene patterning method will be shown. Copper fine line using in this study was encapsulated by conductive metallic liners and the top side is insulated by silicon dioxide. The sample length is 400 um, and inter-connected with higher and lower level by using dual damascene interlevel vias. The activation energy of electromigration for copper and electromigration has been found to be higher for both of the aluminum (delta H = 1.06 eV) and current acceleration coefficient seemed to be lower than aluminum (n = 1.1).

2:00 PM **D2.2**

We have developed a methodology and a prototype tool for making computationally efficient circuit-level assessments of interconnect reliability. A key component of this process has been the development of simple analytic models that reduce the reliability of the complex structures to a number of simple, straightforward, circuit-level lines of
uniform width that are typically used in lifetime tests. We have considered interconnect trees as the fundamental reliability units, where terminal interconnects have variable width. These interconnect trees have width variations. We have developed analytic methods for identifying trees which are immune to failure, and have demonstrated that computationally simple techniques lead to the identification of a large fraction of the trees as being immune to failure (i.e., they are "immortal"). These trees therefore need not be considered in further analyses. Using simulations and analytic treatments we have also developed default models which allow estimation of the reliability of these trees. These models have been tested and validated through experiments on simple tree structures with junctions and line-width transitions. Our prototype circuit-level reliability analysis tool projects the reliability of circuits based on specific layers, and provides an analytic model of the reliability of interconnect trees. This allows the user to accept the assessment as is, to carry out more accurate but computationally-intensive analyses of the least reliable trees, or to modify the layout or process to address reliability concerns and reanalyze the reliability.

2:30 PM D2.3
ELECTROMIGRATION RELIABILITY OF DUAL-DAMASCENE Cu/oxide INTERCONNECTS: E.T. Ogawa, A. Bierwagen, K-D. Lee, A. Ramananith, H. Mushashi, P. Justiss, and P. S. Ho, Univ. of Texas, Center for Materials Science, Austin, TX; V.A. Balmache, SEMATECH (Consortium, Inc.), Austin, TX; R.H. Havemann, SEMATECH (Texas Instruments, Inc.), Austin, TX.

Proper assessment of Cu/oxide dual-damascene reliability in terms of test structures, testing system, and methodology will be critical to its successful integration into interconnect technology. We will present recent results obtained using dual-damascene Cu/oxide test structures designed at UT-Austin and fabricated at Siltec.

The novel test structure is designed to examine the presence of critical length effects; it has also proved useful to evaluate Cu/oxide and/or CMP-interface reliability under electromigration stress conditions. The advantages of this test structure design include shorter testing periods, sharper failure window, and potentially scalable analysis to ULSI interconnect structures. The linewidth examined is 0.5 µm with line lengths varying from 10 to 300 µm. The samples have been tested at temperatures 220, 275, and 325 °C using a current density of 1.0 × 10^4 A/cm². The test structures are shown to be more resistant to electromigration damage than in typical Al/Cu interconnects, and its lifetime characteristics are also comparable to those observed by others. Failure analysis shows that the failure sites are preferentially associated with the region near the via bottom between metal 1 (M1) and metal 2 (M2) levels. Extrusions at the node end of the interconnect lines are also observed. Another failure mode is the failure of the CMP-interface located at the top of M2 level where the apparent flow of Cu material between adjacent lines generates line shorts. Hence, test structure failure is characterized by a race between the two failure modes. Activation energy and current density exponent have also been examined.

2:45 PM D2.4
ELECTROMIGRATION CHARACTERIZATION Versus TEXTURE ANALYSIS IN DAMASCENE COPPER INTERCONNECTS: Jeremy Berenguer, BAE Electronic Systems, Grenoble, FRANCE; Lucile Arnaud, LETI CEA-G, Grenoble, FRANCE; Roberto Gallo, ST Microelectronics, Crolles, FRANCE; Isabelle Tiet, LETI CEA-G, Grenoble, FRANCE; Gerard Marmeix, GEMINI-INSIA, UMR CNRS 5510, Villeurbanne, FRANCE.

We have studied the effect of texture and grain size distribution on the electromigration performances of Copper Damascene interconnects. Three different metallizations have been characterized: CVD copper deposited on CVD TiN and electroplated (ECD) copper deposited on either PVD Ta or PVD TaN. All metallizations are passivated using silicon oxide. Texture and its dependence versus linewidth was measured using X-ray pole figure, for wide polycrystalline lines (1 to 4µm), ECD copper exhibits a strong <111> bottom fiber texture whatever the barrier layer is (i.e. the <111> crystallographic direction are perpendicular to the bottom of the damascene trench). Moreover, the <111> texture is slightly stronger for ECD Cu on Ta. On the other hand, CVD copper deposited on CVD TiN presents a weak <200> bottom fiber texture. For narrower lines (width <1µm), a <111> sidewall fiber texture appears in ECD copper whereas the CVD copper is nearly isotropic.

The mean grain size is much larger in ECD copper than in CVD copper. The reliability performance of these interconnects has been evaluated using both Wafer Level Reliability and Package Level Reliability. The <111> texture improves the lifetime of the interconnects by a factor of 10 for the same level test structures. Considering the activation energies (ECD/TiN: 0.45 eV, CVD/TiN: 0.7 eV, ECD/TaN: 0.36 eV) obtained for 4 µm wide lines where the bottom fiber texture is similar to what is observed in etched Cu, this parametric dependence of the grain size distribution do not seem to be the key factors ruling the electromigration phenomenon.

3:15 PM D2.5
VIA ELECTROMIGRATION LIFETIME IMPROVEMENT OF ALUMINUM DUAL-DAMASCENE INTERCONNECTS BY USING SOFT LOW-K ORGANIC SOG INTERLAYER DIELLECTRICS: Hidemichi Kuroki, Takahisa Ueda, Sadayoshi Ito and Masahide Hasegawa, Microwaves Electronics Engineering Laboratory, Toshiba Corp, Yokohama-City, JAPAN.

The electromigration (EM) reliability of aluminum (Al) dual-damascene interconnects by using Nafion® (Nb) new reflow liner is described. It has been found that the EM lifetime was improved by introducing low-k organic spin on glass (SOG)-passivated structure than the conventional TEOS/SiO2/SiO2-passivated structure. Higher EM lifetime of 1.88×10^6 cycles was obtained through the SOG-passivated structure than the TEOS/SiO2 passivated structure of 0.9 ×10^6, even though no significant Al micro-crystal structure difference was found for both structures. It has been turned out that the low-k SOG material has the 1/7 Young's modulus [8 GPa] of TEOS SiO2 [57 GPa] or thermal SiO2 [70 GPa]. The small Young's modulus means that SOG is more elastically deformable than TEOS or thermal SiO2. This elastic deformation of the low-k SOG could retard the tensile stress evolution due to the Al atom migration near the node via, and elongated the time until the Al interconnect tensile stress exceeds the critical stress value for void nucleation. It has been concluded that the small-RC and reliable multi-level Al interconnect can be realized by the Nb reflow-sputtered process with soft and low-k SOG dielectric materials.

3:45 PM D2.6

With decreasing geometries of metal lines and contacts, the demands on metallization reliability in ULSI's increases rapidly. Besides electromigration additional reliability concerns become severe in connection with stress-induced voiding, influencing lifetime degradation rate and functionality of integrated circuits. The driving force of the stressinduced voiding process is mechanical stress due to thermal mismatch between metallization and encapsulating dielectrics. This paper summarizes investigations on 4-level AlCu-metalization of a 0.25µm embedded DRAM technology. The first part of investigations was focused on the stressmigration behaviour of muller shaped line structures with different line widths. Critical stress rises were observed during high temperature storage tests (HTS) on wafer level in certain metal layers. It was found, that the shift behaviour depends not only on the line width but also on the position on the wafer as well. Illustrative wafer maps will be presented in the paper. Further on, HTS tests were performed at different temperatures and estimation of stressmigration-limited lifetime the activation energy of the effective diffusivity E was determined using the model proposed by T. Sullivan: MTF = A × (1/ΔT)^n × exp(E/ΔT) where MTF is the time to failure, A is characteristic lifetime, n is a constant, ΔT the difference between oxide deposition and HTS temperature T, and k Boltzmann's constant. It was proved, that critical stress rises were caused by stress voids developing in the metalization after a HIP SO4 process. The appearance of stress-voids could be suppressed reducing the HIP deposition temperature in addition to an anneal, introduced after metal patterning. In the second part HTS tests were performed on different types of stacked via chains. Critical stress rises were found for stack architectures using small or no landingpads. In contrast, stacks with large or special shaped landingpads showed no critical drifts.

4:00 PM D2.7
A PERCOLATION APPROACH TO ELECTROMIGRATION MODELING: C. Penetta, L. Leggiani, Carnegie Mellon University, Dept. of Innovation Engineering, Toronto, ITALY; F. Fantini, Modern University, Dept. of Engineering Sciences, Moderna, ITALY; A. Scorzo, Perugia University, Dept. of Electronic and Information Engineering, Perugia, ITALY; I. De Munari, Parma University, Centro MTI, Parma, ITALY.

We present a new stochastic method which simulates electromigration (EM) damage in metallic interconnects by biased-percolation of a random resistor network approach not only reproducing the phenomenological behavior of EM, including Blakes's law and the log-normal distribution of the times to failure but also provides insight into specific stochastic features of degradation e.g. damage process, resistance evolution, noise spectra. The mechanism of degradation in a metallic interconnect is described by a
two-dimensional square-lattice network of initially identical resistors deposited on an insulating substrate. The network is subjected to a constant stress current and the electromigration damage and corresponding void growth is simulated by the generation of defects (broken resistors) introduced according to a thermally activated probability related to the local current. Healing is simulated by removing networks defects by another thermally activated process characterized by a suitable activation energy, in general different from that associated with damaging. The iteration process of defect generation and recovery is repeated until the network breaks down by becoming an open-circuit. The simulated evolution of the damage patterns and the network resistance. The damage pattern results show spatial correlations among growing voids. Results on electrical resistance evolutions depending on the current stress exhibit various scenarios. Resistance at high currents on abrupt failure occurs, at intermediate currents the failure is preceded by violent resistance bursts, and at low currents steady-state conditions are reached. These resistance evolutions were also observed in EM experiments on Al-0.5% Cu lines. Simulations with a sudden interruption of the stress current were executed where drops in the resistance associated with the role of healing were found. The agreement between simulations and experiments is encouraging. The feasibility of the approach offers new possibilities of improving EM modeling with the aim to include geometrical, compositional and structural effects which are often present during EM.

4:15 PM **D2.8**

THE RELIABILITY EFFECTS OF DIFFERENT LENGTH RATIOS IN INTERCONNECTS WITH NARROW-T-TO-WIDE TRANSITIONS

Christoph Steel, Range, Carl V. Thompson, Massachusetts Institute of Technology, Cambridge, MA; Thomas N. Miehle, Intel Corporation, Portland, OR.

Interconnect reliability is usually assessed through lifetime tests on straight, uniform lines with fixed widths. However, real interconnects often have junctions with narrow-to-wide transitions. We have carried out experimental and modeling-based studies of interconnects with narrow-to-wide transitions. Two-level Al-0.5% Cu electromigration structures with narrow-to-wide transitions have been studied as a function of transition location (L1) while fixing the total line length, and narrow and wide line widths. The narrow-to-wide transitions were found to be a site of atomic flux divergence due to the discontinuity in diffusion coefficients between the narrow and wide segments, which have bamboo and polygonal microstructures, respectively. Consequently, it was found that lifetime decreases with L1 for structures with an L2 beyond a critical distance, due to an increased interaction between the stress evolution at the electron-source via and the stress evolution at the width transition. Narrow-to-wide structures with an L1 smaller than a critical distance have much higher lifetimes which are a function of transition location due to a lack of interaction between the electron-source via and the width transition. Because the mode of failure was identical for all structures (i.e. failure by working at the electron-source via), we are able to apply the experimental results with simulations to determine the critical stress range for void-nucleation-failure is 600 ± 108 MPa.

4:30 PM **D2.9**

NOVEL LOW-K MULTIPHASE MATERIALS PREPARED BY PECVD

A. Grill and V. Patel, IBM-T. J. Watson Research Center, Yorktown Heights, NY.

Low-dielectric constant (low-k) materials comprised of Si, C, O and H (SiCOH) films and prepared by plasma enhanced chemical vapor deposition (PECVD) have been demonstrated by different authors. These ("single phase") materials are characterized by dielectric constants not less than about 2.8, almost independent on the used precursor or deposition system. Further lowering of the dielectric constant could potentially be achieved by increasing the introducing porosity in the films. Such enhanced porosity could be produced by deposition using a mixture of a methane thermally stable phase and annealing the films to remove this stable phase from the material. Dual phase materials have been prepared in the present study by PECVD from mixtures of SiCOH precursors with gases containing mainly C and H. The films have been characterized as-deposited and after thermal anneals of up to 8 hours at 400°C. The atomic composition of the films has been determined by RBS and ERDA analysis and their optical properties have been determined by FTIR and Raman measurements. The dimensional stability has been determined by measuring the changes the step heights produced in the films. Metal Insulator Silicon (MIS) structures have been used to test the electrical properties of the dual-phase films. After an initial anneal, the permittivity of SiCOH and some SiOC films and a thickness of up to 400 nm the films stabilized. Depending on the deposition conditions and concentration of the CH compound in the feed gas the dielectric constant decreased by 10-15% during the stabilization and reached values as low as 2.4. These results indicate the possibility to further reduce the dielectric constant of PECVD produced SiCOH films and the potential to incorporate such films in the interconnect structures of future ULSI chips.

SESSION D3: LOW-k DIELECTRICS

Thursday, March 26, 2000

Golden Gate B2 (Marriott)

8:30 AM **D3.1**

PROCESS OPTIMIZATION AND INTEGRATION OF TRIMETHYLSILANE DEPOSITED SiC H AND SiCOH DIELECTRIC THIN FILMS FOR DAMASCENE PROCESSING

W.D. Gray, IMEC, Dow Corning Corporation, Midland, MI; M. Lobodz, Dow Corning Corporation, Midland, MI; H. Strauf, M. Van Herle, J. Donat, E. Sleev, W. Holler, B. Coenegrachts, M. Maenens, S. Vandenborne, IMEC, Heverlee, BELGIUM; H. Meynen, Dow Corning, Seneffe, BELGIUM; K. Mux, ESAT-INSYS, Katholieke Universiteit Leuven, BELGIUM.

The organosilicon gas trimethylsilane can be used to deposit unique Si-C based alloy films that exhibit desirable properties such as chemical resistance, low stress, low permittivity and low leakage. These film characteristics are ideal for applications in Cu-damascene interconnect technology. In this work, the results of a comprehensive study of trimethylsilane (3MS) PECVD deposited dielectric films are reported. Depositions were performed in commercial production PECVD equipment. Process for n-SiCOH films deposited from 3MS/He mixtures has been optimized for deposition rate, uniformity, and permittivity. The processing parameters can be tuned for relative permittivity down to 4.2 making a-SiCH an attractive substitute for PECVD oxides. Using mixtures of SiCH and SiCOH films are deposited, with very high deposition rates and film permittivity as low as 2.5 suggesting suitability for use as an ILD layer in damascene technology. Physical properties and stability of blanket films have been studied. Measured local interconnect leakage current, and breakdown voltage was performed on metal/insulator/metal (MIM) structures. FTIR, Auger, and high-energy ion scattering spectrometry (RBS/ERD) were used to determine bonding and film compositions. Integration issues related to DUV lithography, dry etch, strip, and metallization will be discussed. Optimized film processes were integrated into 0.18 μm Cu Damascene interconnect process technology and the electrical results compared to standard PECVD oxide. The results of these studies indicate that physical and electrical performance improvements inferred from the blanket film properties can be realized in fully integrated interconnect structures.

9:00 AM **D3.2**

ON THE MECHANICAL INTEGRITY OF ULTRA LOW DIELECTRIC CONSTANT MATERIALS FOR USE IN ULSI BEOL STRUCTURES

Adherence to the prescript of Moore’s law continues to drive multilevel development for new and lower dielectric constant materials for use as back-end-of-line (BEOL) interlayer dielectric in advanced logic IC’s. As is the case for the current generation of low-K materials (~3.0), these ultralow K materials (<2.5) will need to meet the variety of integration and reliability requirements for successful product development. Excluding the incorporation of fluorine to lower the material polarity, further reductions of dielectric constant can only be achieved by reduced density. Based upon the industry’s experience with the current class of high density dielectrics, process integration may be challenging for ultralow K materials. This anticipated difficulty derives from the profound differences in material properties, e.g. mechanical integrity, in one lowers the material density, which in turn confines existing manufacturing processes that have evolved over 35 years based on silicon dioxide. Minimizing these material and processing differences by extending leveraging from previous technology nodes is essential for timely and cost-efficient development cycles. As a result, material selection of a full density low-K is somewhat influenced by the ability of that material to be extended into future generations. Understanding how the material properties will change as its density is lowered is vital to this selection process. In this paper, we present a summary of models for calculating effective properties as a function of density and apply these to current low-K materials with emphasis on mechanical integrity. We will also review experimental methods for measuring the mechanical integrity of ultralow K materials and compare the results to the various models described herein.

9:30 AM **D3.3**

STUDY OF SiH4-BASED PECVD LOW-K CARBON-DOPED SILICON OXIDE

Hongming Yang, Douglas J. Tweet, Lisa H. Stecker, David R. Evans and S-T. Hsu, Sharp Laboratory of America, Camas, WA.
Recent research development indicates that PECDV carbon-doped silicon oxide (SiOC) has been emerging as one of the best low-k dielectric candidates for delivering the required performance in future IC interconnects. In previous studies, SiOC films were deposited using organosilicon precursor: (CH3)3SiH2 [1]. In this talk, we present the properties of PECDV low-k SiOC films produced by using conventional SiH4-based gas precursors. Since the precursors are inexpensive, commercially available and convenient to operate for existing tools, the process should not require additional cost as compared with conventional SiCD4/CVD silicon oxide films. The SiOC films have similar good physical and electrical characteristics to those of (CH3)3SiH2-based SiOC. The dielectric constant ranges from 2.3 to 3.1 with density from 1.4 to 1.7 g/cm3 correspondingly. Leakage current is measured to be in the order of ∼10−6 A/cm2 at a field of 1 MV/cm. The films are stable against thermal anneal at > 400°C. Post anneal for spin-deposited film may not be necessary if appropriate process conditions are chosen. We shall demonstrate the feasibility for the integration of Cu/SiOC on dual damascene interconnection. Two types of dual damascene structures, Cu/SiOC/SiOC and Cu/SiOC/SiO2 have been studied. Related dry etching issues will be discussed. Finally, the evaluation on electrical performance of the Cu/SiOC-based dual damascene structure will be presented. [1] J.M. Lobodz, in Advanced Metallization Conference, Orlando, FL, 1999.

9:45 AM D3.4

A CVD-based low k film was evaluated for inter-metal dielectric in < 0.18 μm generation devices. The film was prepared by conventional rf PECDV of organosilane compound. The film was then thermally treated at 400°C to obtain desirable electrical, mechanical and thermal characteristics. The dielectric constant of the film after the thermal treatment was 2.7±0.3. The k value of the film was stable over several weeks and the moisture absorption was minimal. The chemical composition of the film was in the form of SiO2-C:H, where the carbon content was less than 10 atom %. The low carbon content of the film is believed to possess a significant advantage in etch uniformity and related issues, excludes CMP and wet etching difficulties. Blanket films were used to find out the integration characteristics of the film. The largest increase in k value during the integration occurred during etching and chlorine steps and it was found that the damage from these steps is limited to within 0.30 Å at the top surface. The initial low k value, however, was recovered after the top damaged layer was removed by CMP. The deposition temperature dependence of the film characteristics was also determined. The k value was increasing with temperature while the Si-CH3 and Si-H bonds were decreased. The film density was measured ranging from 1.4-1.6 g/cm3 as compared to 2.3 of conventional SiO2 film. The AFM images of the deposited film indicate smooth surface morphology. The roughness was comparable to that of the conventional SiO2 film deposited by PECDV method.

10:30 AM D3.5
CHARACTERIZATION OF MSQ-BASED LOW-K DIELECTRIC MATERIALS. Michael Kienzle, Taihui Cho, Dongwen Gan, Chun Hu, Junjun Liu, Ji-Jun Zhao, Paul S. Ho, Microelectronics Research Center, University of Texas at Austin, Austin, TX, Changming Jin, Robert J. Fox III, Jeffrey T. Wetzel, SEMATECH Inc., Austin, TX.

In order to identify promising low-k dielectric materials, which satisfy the needs for process integration into Cu low-k interconnect structures, extensive efforts have been made to characterize a wide variety of materials. Beside many others dielectric, thermal and mechanical properties are some of the most critical. Among the low-k materials described in this talk, the University of Texas at Austin in collaboration with SEMATECH, two groups of materials have been studied extensively. Methylsilsesquioxane (MSQ)-based porous materials and CVD carbon doped oxides, which have a composition similar to MSQ as well. The thermal and mechanical properties of the carbon doped oxides have been characterized using FTIR and XPS, for carbon doped oxides deposited with different precursors and process conditions. These results will be related to the dielectric constant, the thermal and mechanical properties, and the thermal conductivity of MSQ materials. For the porous materials the dielectric constant is related to the thermal and mechanical properties. As moisture uptake appears to be critical for the materials discussed, direct measurements of the moisture uptake using a quartz-crystal microbalance and the dependence of the dielectric constant on various annealing cycles will be presented.

11:00 AM D3.6
SYNTHETIC CONTROL AND PROPERTIES OF PROCESSIBLE POLY(METHYL-SILSESQUIXANE). J-K Lee, H-J. Kim, H-W. Ro, D-Y. Yoo, D-Y. Yoon, Department of Chemistry, Seoul National University, Seoul, KOREA; K. Chu, School of Chemical Engineering, Seoul National University, Seoul, KOREA; H-W. Rhee, Department of Chemical Engineering, Sungkyunkwan University, Seoul, KOREA.

Processible poly(methyl-silsesquioxanes) (PMSSQ), [(Me3SiO)x], were prepared by acid-catalyzed hydrolytic condensation of met-hytralkoxysilane, Me3Si(O)Me3 and Me3Si(OR)x. Molecular weight of polymers was controlled by the molar ratio of metalalkoxysilane and catalysis/methyltrimethoxysilane, and polymerization was suppressed in order to obtain processable polymers. Solvents had a great effect on the polymerization rate, and the relative amount of water and alcohol produced during the polymerization was also controlled the molecular weight of polymers. Moreover, hydrolysis of methyltrimethoxysilane and alcoholicysis of hydrosilane were shown to result in an equilibrium state of molecular weight distribution, as confirmed by NMR and GPC experiments. PMSSQ samples of very narrow molecular weight were then prepared by fractionation of the polymerization mixture which exhibits a very broad molecular weight due to the polycondensation process. The effects of the molecular weight fractions on the mechanical, electrical and surface properties of the final PMSSQ films will be discussed.

11:15 AM D3.7
PLASTIC ENERGY DISSIPATION IN DUCTILE POLYMER LOW-K FILMS. Christopher S. Littke and Reinhold H. Daskard, Department of Materials Science and Engineering, Stanford University, Stanford, CA.

New dielectric layers are required to increase the performance and decrease the manufacturing cost of interconnects in microelectronic devices. One strategy is to employ oxides or organic/inorganic hybrids both of which tend to be brittle and have a low fracture resistance. Alternatively, new thermal dielectric polymers (SiLK, Dow Chemical) show promise as a class of low-k materials with associated mechanical ductility and fracture resistance. In the present study, macroscopic adhesion was measured in terms of the critical strain energy release rate (Gc) of a stable debond located at the interface between SiLK and selected barrier or metal layers. In previous work, plastic deformation of ductile metal layers was shown to significantly contribute to Gc, however, the benefit of such energy dissipation is not always observed for very thin layers of interest in the microelectronics industry due to dislocation strengthening mechanisms. Alternatively, polymer yield properties are not dominated by the same strengthening mechanisms and can be controlled with chemistry and curing. Accordingly, the adhesive and mechanical properties of SiLK films were investigated in order to understand the plastic energy contribution to adhesion. The dependence of yield stress and macroscopic adhesion is described in terms of cross-link density, film thickness, and polymer chemistry.

11:30 AM D3.8
THEORETICAL AND EXPERIMENTAL ANALYSIS OF THE LOWER DIELECTRIC CONSTANT OF FLOURINATED SILICA. Alex Demkov, Ran Liu, Stefan Zoller, Dennis Werho, Mike Kottke, Rich Gregory, Semiconductor Product Sector, Motorola, Inc., Austin, TX, L.C. McIntyre Jr., M.D. Ashbaugh, Department of Physics, University of Arizona, Tucson, AZ.

The fluorinated silicas (FTEOS) is known to have the dielectric constant in the range of 3 to 3.5 that is significantly lower than that of the fluorine free material [4]. The reasons behind the reduction of the dielectric constant are not very well understood and are somewhat controversial. It is not known exactly whether the electronic or ionic contributions to the overall screening is being diminished upon the fluorine doping. To shed more light on this phenomenon we have studied FTEOS both theoretically with ab-initio modeling and experimentally with measurement techniques. Nuclear reaction analysis was used to measure fluorine composition. XPS and Auger experiments provided the information on the atomic structure of the film. We use a large cell of cristobalite to model fluorinated silica theoretically. The ground state geometry is obtained via the energy minimization. Two types of Fluorine have been found; a bridging fluorine acts just as an oxygen atom, and forms two Si-F bonds (0.158 nm, and 0.162 nm). In addition, we find a terminal fluorine atom that forms only one bond to Si (0.152 nm). As a result a nano-pore forms in the simulation cell. Analysis of the Si-O-Si bond and nitrogen distribution in the terminal shows that even though the angle of 147° is still very similar to that in fluorine free cristobalite angles as low as 112° and 130° are introduced to the system. We calculate the vibrational density of states at the Gamma point, and analyzed these using various non-local modes. We find a strongly localized mode at 835
cm$^{-1}$; this vibration involves the terminal fluorine. The calculated frequency agrees well with the 986 cm$^{-1}$ value measured by frequency transmission of the SF$_2$ stretch reported in the literature [1,2]. The presence of terminal fluorine atoms without the formation of dangling Si bonds puts special requirements on the framework topology, and on the maximum fluorine concentration resulting in a stable network. We will discuss these geometrical constraints. We compute the electronic and the ionic susceptibilities for models with various fluorine concentrations. The effect of fluorination on the dielectric constant will be discussed. [1] K. Kim, D. H. Kwon, G. Naingle, and G. S. Lee, J. Vac. Sci. Technol. A10, 1509 (1992). [2] G. Lucovsky and H. Yang, J. Vac. Sci. Technol. A15, 1509 (1997).

This paper presents the study of the organic low-k material Oxazole Dielectric (OxD) including its thermal, chemical, electrical and mechanical properties. The suitability of OxD for a damascene architecture has been assessed by investigating its properties after various plasma treatments and by integration of OxD with copper. The precure of OxD is a Poly(o-hydroxamidine) which is converted to Oxazole Dielectric by thermal cure at T 2 350°C. The dielectric layer adheres to SiN/SiO$_2$, SiCN, SiO$_{2n}$, SiCN and SiO$_2$. Typical stress values at 25°C are 35 MPa and the layers are thermally stable up to 500°C. The dielectric constant k was determined to be 2.5 by means of impedance spectroscopy. The k-value is almost independent of frequency in the range of 1 MHz and it does not change after temperature cycling at 450°C. GC/MS investigations at 400°C showed only low amount of outgassing molecules which do not influence the properties of OxD after being integrated into the damascene structure. The impact of Ar, CF$_4$, and O$_2$ plasma treatments on the bulk and surface composition and properties of OxD were determined by XPS spectra and Atomic Force Microscopy. The patterning of OxD is feasible for Single and Dual Damascene architectures. The SEM demonstrates excellent selectivity of the OxD patterning process towards SiO$_2$. Vias and trenches show smooth sidewalls and bottoms. The dimension control of both features is perfect. Electrical characteristics of copper lines embedded in OxD after CPM processes were investigated. Metal line resistances as well as leakage current measurements between unconnected copper comb and serpentine structures gave very good results. These results are attributed to proper control of the overall process flow, to a minimum etching and erosion during CMP processing as well as the fact that degradation of copper by OxD does not occur during the fact process.

SESSION D4: LOW-k DIELECTRICS-POROUS MATERIALS Tuesday, April 25, 2000 Golden Gate D2 (Marriott)

1:30 P.M. D4.1 CHARACTERIZATION OF NONPOROUS THIN FILMS USING X-RAY AND NEUTRONS Wenli Wu, Eric Lin, William E. Wallace, NIST, Polymer Division, MS 367, Gaithersburg, MD.

A new methodology to characterize nanoporous thin films has been developed. More specifically, the average pore size, pore connectivity, film thickness, pore wall density, coefficient of thermal expansion and moisture uptake can now be measured using this newly developed methodology which is based on a novel combination of small angle neutron scattering (SANS), high resolution x-ray reflectivity (HRXR), and ion scattering techniques. The measurements can be performed directly on films supported on silicon substrates. HRXR is used to accurately measure the film thickness, electron density, and the coefficient of thermal expansion. SANS is used to determine the pore structure and to provide information such as the average pore size, pore connectivity, and moisture absorption. Ion scattering techniques are used to determine the elemental composition of the films. We have successfully determined the pore structure of films less than 0.5 μm thick by combining information from all three of these techniques. We provide the first measurements of important quantities such as the porosity and the pore wall density. So far this method has been performed successfully over a wide range of materials developed by industries for low-k dielectrics.

2:00 P.M. D4.2 CHARACTERIZATION OF POROUS LOW-k DIELECTRIC FILMS

BY ELLIPSOOMETRIC POROSIMETRY. M.R. Bochkarev, IMEC, Leuven, BELGIUM; K.P. Mogilnikov, Institute of Semiconductor Physics, Novosibirsk, RUSSIA.

Ellipmosetric porosimetry is a new, simple and effective method for the measurement of the average pore size, inner surface area, relative amount of open and close pores (pore interconnectivity) and pore size distribution in thin porous films deposited on top of any smooth solid substrate. Because a laser probe is used, small surface areas can be analyzed. Therefore, EP can be used on patterned wafers and can be used in real time on electronic test chips. An example is an in-situ new version of adsorption (BET) porosimetry. In situ ellipsometry is used to determine the amount of adsorptive which adsorbed condensed in the film. Changes in refractive index and film thickness arc used to calculate the quantity of adsorptive present in the film. Ellipmosetric porosimetry allows also the study of thermal, adsorption and swelling properties of low-k dielectric film. Such type phenomena are demonstrated for the low-k SILK dielectric film. Comparison of ellipmosetric properties of different low-k dielectric films has also been carried out from results of the EP measurements. Room temperature EP based on adsorption of vapor of some organic solvents has been developed. Method of calculation of porosity and pore size distribution and results of measurements on mesoporous and microporous xerogel films and mesoporous FOS films are discussed. Examination of the validity of Gurvitch rule for various organic adsorptives (toluene, heptane and carbon tetrachloride) is carried out to assess the reliability of measurements of pore size distributions by ellipmosetric porosimetry.

2:30 P.M. D4.3 PROBING PORE CHARACTERISTICS IN LOW-k THIN FILMS USING POSITRONIUM ANNihilation LIFETIME SPECTROSCOPY. David Gixley, William Frine, University of Michigan, Department of Physics, Ann Arbor, MI, Terry Doll, Jimmica Sun, Albert Yee, University of Michigan, Department of Chemical Science and Engineering, Ann Arbor, MI, Todd Ryan, Huei Min Ho, Sematech, Austin, TX; Caren Nguyen, IBM Almaden Research Center, San Jose, CA; Dajoon, Seoul National University, Department of Chemistry, Seoul, KOREA.

Depth-profiled positronium annihilation lifetime spectroscopy (PALS) has been used to probe the structure and porosity (pore size, pore connectivity) in thin, porous films, including silica and organic based films. The technique is sensitive to all pores (both interconnected and closed) in the size range from 0.1 nm to 600 nm, even in films buried under a diffusion barrier. PALS may be uniquely capable of deducing porosity size distribution in closed-pore systems where gaseous absorption methods are not available. In this technique a focused beam of several keV positrons forms positronium (Ps, the electron-positron bound state) with a depth distribution that depends on the selected positron beam energy. Ps initially localizes in the pores where its natural annihilation lifetime of 142 ns is reduced by collisions with the pore surfaces. The collisionally reduced Ps lifetime is then distributed with pore size and is the key feature in transforming a Ps lifetime distribution into a pore size distribution. In thin silica films that have been made porous by a variety of methods the pores are found to be interconnected and an average pore size is determined (see Gixley et al., Phys. Rev. Let. 85, 1577 (1999)). In a new approach metahybridsiloxane film with nominally closed pores a pore size distribution has been determined. The methodology and physical basis for PALS will be presented along with recent results. PALS is a non-destructive, depth-profiling technique with the potential to determine that positrons can be implanted into the porous film where positronium can form. This research is supported by the National Science Foundation (ECS-9538084), SEMATECH, and the University of Michigan.

3:15 P.M. D4.4 EVAPORATION-INDUCED SELF-ASSEMBLY OF MESOPOROUS BACTRIAN POLYHILOXOSILANE FILMS WITH INTEGRAL ORGANIC FUNCTIONALITY. C. Jeffrey Brinker, Douglas A. Loy, Hongyou Fan and Darren Dunphy, Sandia National Laboratories, University of New Mexico, Advanced Materials Laboratory, Albuquerque, NM; Yunfeng Li, Applied Materials, San Jose, CA.

Recently, through combination of sol-gel processing with self-assembly strategies our group has established an evaporation-induced self-assembly (EISA) route to the formation of highly ordered mesoporous films and nanoparticles. Compared to xerogels which may have average pore sizes of over 16 nm and a broad pore size distribution, mesoporous materials are characterized by a unimodal pore size distribution controlled by the organic ratio between 1.4 and 4.5. In addition, whereas the fractal nature of xerogel networks exists there to be many pendant sites that do not contribute to mechanical strength or thermal conductivity, mesoporous frameworks are completely mechanically and thermally connected. This paper describes extension of our EISA approach to hybrid, bridged
polysilsequioxanes (BPSQ), in which organic moieties are covalently incorporated as bridging ligands. Starting with an oleogemic sol of BPSQ, a one surfactant prepared in an alcohol/water-solvent with surfactant concentration less than the critical micelle concentration, preferential evaporation of alcohol during spin-coating results in self-assembly of micelles and further self-organization into BPSQ/surfactant mesophases. The material and chemical treatments are used to condense the framework and remove the surfactant templates resulting in hybrid mesophases with integral organic functionality. In contrast to previous hybrids where organic ligands or moieties are only noncovalently bound on the surface, these materials necessarily incorporates the organic constituents into the framework as molecularly dispersed bridging ligands. This new mesosstructural organization is anticipated to result in synergistic properties deriving from the mesophases. The material and chemical treatments should impart toughness, hydrophobicity, and a reduced dielectric constant to the framework, while at the same time enhancing the thermal stability of the organic constituents.

3:45 PM D4.5
ULTRA LOW MESOPOROUS SILICA FILMS: SYNTHESIS, DIELECTRIC PROPERTIES AND SINGLE-DAMASCENE EVALUATION. Suresh Baskaran, Jun Liu, Xiaohong Li, Chris Cole, Jerome Bornhaut, Glen Frewell, Pacific Northwest National Laboratory, Richland, WA; Changming Jin, Semtech, Austin, TX.

Highly porous silica films with pore sizes in the nanometer scale are potentially useful as interlevel dielectrics with k in the range of 1.5 to 2.0. This presentation will discuss properties of mesoporous silica films prepared by the molecular templating approach. In this paper, we present information on (1) obtaining highly porous open-pore structures through control of solution/surfactant chemistry, (2) obtaining low dielectric constant in mesoporous silica films in which the surfactant templated approach and subjected to dehydroxylation treatments, and (3) single damascene evaluation of PNMI's mesoporous silica films at SEMATECH. Two primary conclusions at this stage: (1) With control of porosity and the pore structure, functionalization, dielectric constant of k = 1.90 may be achieved. (2) The mechanical integrity of mesoporous structures indicates significant promise for withstanding mechanical stresses in fabrication of interconnects. Further developmental work required to address potential performance limitations and integration challenges with open-pore structures will be briefly discussed.

4:00 PM D4.6

The requirement for materials with dielectric constant much less than 4 for use in future devices is the driving force for the research to establish AlliedSignal's Nanoglass™. A nanosized silica film, offers the ability to tune the dielectric constant from 3 to lower than 2 and thus offers the capability to be used for a number of future technology generations. Progress continues to be made in the development of Nanoglass™ for intermetal dielectric (IMD) applications. However, the requirements for the materials in these applications are very stringent and continuous improvement is needed. Thermal stability, mechanical strength, and chemical stability. Study full testing of our newly developed Nanoglass™ endures more than ten times improvement in cohesive strength. Excellent film uniformity as well as thermal stability at 450C are also demonstrated. This presentation will provide discussion on some of the challenges encountered and the approach to dealing with these issues as well as the properties of the newly developed materials.

4:15 PM D4.7
A MULTILEVEL METAL INTERCONNECT TECHNOLOGY WITH INTRA-METAL AIR GAP FOR QUARTER-MICRON AND BEYOND HIGH PERFORMANCE PROCESSES. Mark Lin, Chun-Yen Chang, Tiao-yuan Huang, Institute of Electronics, National Chiao Tung University, Hsinchu, TAIWAN; Micron-Lin Ltd., United Semiconductor Corp., Hsinchu, TAIWAN; C. H. Lin, National Nano Device Labs., Hsinchu, TAIWAN.

A multilevel metal interconnect with air-gap between metal lines, which has been successfully integrated into a rapid turn-around-time 0.25um foundry manufacturing, is described. Three different types of intra-metal dielectric materials, i.e., high-density plasma (HDP) CVD-deposited HfOx (HSQ: k=3.3), and the air-gap (k=1), were fabricated. Their performance and reliability (i.e., electromigration EM, and stress migration SM) were carefully studied. Samples with air-gap (i.e., voids) were fabricated by carefully controlling the SiO2 deposition conditions to form the voids between the metal lines, followed by PECVD SiO2 deposition to serve as the intermetal dielectric. Air-gaps with different sizes and vertical positions relative to the metal lines are reproducibly obtained. The metal lines are found to be not only the only ones in the same level, but in both above and below the metal lines to effectively reduce the fringing capacitance. EM and SM results show that the lifetime extent of lifetime for all three splits, suggests that reliable multilevel interconnect with air-gap is obtained. Detailed data will be presented at the conference.

4:30 PM D4.8
FABRICATION OF AIR-GAPS BETWEEN Cu INTERCONNECTS FOR LOW INTRA-LEVEL DIELECTRIC CONSTANT. Dharhayuj Basani, Michael Wedekind, Paul Kohl, Georgia Institute of Technology, School of Chemical Engineering, Atlanta, GA; Caryle Crie, Fred Klemens, John Miner, Lucent Technologies, Murray Hill, NJ; Byung-Chul Lee, Ronald Gutmann, Beneshler Polytechnic Institute, Troy, NY; J.J. Lee, Motorola Inc, Austin, TX; Robert Sink, B.F. Goodrich Company, Brecksville, OH.

We present here a method for fabrication of air-gaps between Cu interconnects to achieve low intra-level dielectric constant, using a sacrificial polymer as a place holder. IC compatible metallization and CMP processes were used in a single damascene process. The air-gap occupies the entire intralevel volume with fully densified SiO2 as the planarized dielectric thickness. The air-gaps have a width of 60nm with 50nm wide copper lines was 286nm. The effective intra-level dielectric constant was calculated to be 2.19. The thickness of the interlevel SiO2 and copper lines were 1.1 and 0.8588, respectively. Further reduction in the value of intralevel dielectric constant is possible by optimization of the geometry of metal/air-gap structure, and by use of a low-k interlevel dielectric material. In this method of forming air-gaps, the layer of sacrificial polymer is spun-coated onto the substrate and reactive-ion-etched into the desired pattern using an oxide or metal mask. The intralevel Cu trench is then inlaid by using a damascene process, wherein the Th/Cu barrier/seed layer is deposited by PVD while the bulk of Cu is electrochemically deposited. After the CMP of copper, interlevel SiO2 is deposited by plasma-CVD. Finally, the polymer is thermally decomposed with decomposition products permeating through the interlevel dielectric material. The major advantages of this method over other reported methods of formation of air-gaps are excellent control over the geometry of air-gaps, no protrusion of air-gaps into the interlevel dielectric, no deposition of SiO2 over the sides-walls, and no degradation of the interlevel dielectric during the formation of air-gaps. The decomposed air-gaps between metal interconnects is described. Various issues pertaining to the thermal decomposition of the sacrificial polymer, diffusion of the decomposition products through the interlevel dielectric, residue left after decomposition of the polymer, effects of growth conditions of the dielectric etc. are discussed.

4:45 PM D4.9

As the feature size on integrated circuits continues to scale down, there is a need for intermetal dielectric materials with extremely low k values that is required to reduce parasitics and improve device performance. It is generally agreed that, dense materials, either organic or inorganic, could not deliver dielectric constant (k) < 2.0 without introducing the concept of porosity. As a result, processes to introduce nano-scale or molecular level porosity into existing materials which have acceptable physical properties (other than k) has become the primary focus for next generation dielectric materials. In this study, attempts have been made to prepare nanoporous silsesquioxane films from organic/ inorganic polymer hybrid. Two different low molecular weight thermally labile organic polymers would be incorporated into hydroxysilsequioxane (HSQ) resin and spin-coated onto Si substrate. Upon heating to about 300°C, HSQ resin cross-links around the polymer templates. Subsequent thermal treatment at higher temperature results in decomposition of the labile components and thus produces porous films. Thermal characterization tools such as thermogravimetric analysis (TGA) and dielectric analysis (DEA) were employed to investigate the effectiveness of these labile components in generating pores. It is very important to optimize the
SESSION D5: POSTER SESSION: LOW-K DIELECTRICS
Tuesday Evening, April 25, 2000
8:00 PM
Salon 1-7 (Marriott)

D5.1 PROCESSING, PROPERTIES, AND CMP CHARACTERISTICS OF SPIN-ON POLYMERS: POLY[SILOSQUOXANES]: Wei-Jung Lin, Cheng-Jung Yang, Wen-Chang Chen, Department of Chemical Engineering, National Taiwan University, Taipei, TAIWAN.
Poly[Si(sesquioxanes)] such as HSQ, MSQ, and HOSQ have potential applications as low-k dielectrics. A few questions will be addressed in this study: (1) The relationships between spin coating, curing temperature, electronic properties, and structures of the poly[sil sesquioxanes]; (2) The CMP characteristics of the poly[sil sesquioxanes]; and (3) The integration of the poly[sil sesquioxanes] with Al and Copper. We have developed a mathematical model to predict the film thickness during spin coating and curing. We also evaluated the transformation of the cag-form to the network form for different poly[sil sesquioxanes] during curing by FTIR technique. The electronic properties of the studied poly[sil sesquioxanes] such as dielectric constant and refractive index strongly affected by the ratio of the cag network form. Hence, it is possible to monitor the properties of poly[sil sesquioxanes] by combinations of spin coating and curing. The CMP characteristics of HSQ, MSQ, and HOSQ were studied by using different kinds of slurries and surfactants. The investigated slurries included SiO2-based slurry (85:15), ZrO2-based slurry (Al), and Al2O3-based slurry (80:10:10:0). The used surfactants included non-ionic Triton X-100, anionic DSSS, and cationic TMAH. The experimental results suggest that the organic content, the hardness and charge status of the abrasive, the polarity and charge status of the surfactant significantly affect the polishing results.

D5.2 LOW-K SILICON NITRIDE FILM FOR COPPER INTERCONNECTS INTEGRATION PREPARED BY CATHODIC CVD AT LOW TEMPERATURE: Hidenaka Sato1,2, Akira Imai1 and Hidetsu Matsunuma1. 1)JAIST, Iwakuni, JAPAN; 2)Fujitsu Limited, Mie, JAPAN.
As the dimensions of ultra-large scale integrated circuits (ULSI) devices continue to shrink, the RC delay of interconnects will limit of the device speed performance. Recently, low resistivity Cu interconnects with damascene process integration is introduced to solve this problem. However, conventional Cu damascene process requires plural layers of high-k SiN film for a groove etch-stopper and a barrier of Cu diffusion. Because high permittivity of SiN, the merit of Cu interconnects has been degraded by the parasitic capacitance effect. Since process temperature is limited only PECVD SiN film. It is often poor barrier properties, but adopt unacceptably. To solve this problem, new low-k SiN film for barrier of impurity diffusion and oxidation ability has been developed with catalytic (Cu-) CVD method at low temperature. In the Cu-CVD method, the deposition gases such as ammonia mixture of silane and ammonium are decomposed by catalytic cracking reactions with a heated tungsten catalyst placed near substrate. SiN films are formed at substrate temperatures below 400°C without using plasma. In this paper, superior film property of Cu-CVD low-k SiN is presented. The permittivity of Cu-CVD low-k SiN film can be below 6 by adjusting deposition conditions, whereas that of conventional SiN is about 7.8. This permittivity is determined by measurement of the capacitance of MIS structure. Additionally, the film tends to cover the steps or grooves conformally and post-deposited hydrogen treatments using Cu-CVD system can suppress the oxidation of the film. The results demonstrate that Cu-CVD SiN film is expected as a new low-k SiN film.

D5.3 MATERIALS PROPERTIES OF A SiOC LOW DIELECTRIC CONSTANT FILM WITH EXTENDIBILITY TO k<2.7: Eugene Leppata, Lydia Young, silicon valley group thermal Systems, Scotts Valley, CA; John Selma, Nano Scale Surface Systems, Alhambra, CA.
One of the greatest material challenges for the microelectronics industry in recent years is the identification of advanced dielectric materials to replace silicon dioxide as an intermetallic and intermetal dielectric for back-end-of-line applications. While many compounds have been considered and materials such as low-k materials presents a significant trade-off and none has emerged as a universal solution. The requirements for VLSI thin films for future generations of semiconductor devices provide an excellent opportunity to use some of the known plasma polymization process techniques. The advantage of these materials is the ability to make silicon based thin films that have organic polymer-like content: SiOC materials. Much of the approach offers the promise of tailoring hybrid materials to provide the best properties of silicon dioxide (such as thermal stability, hardness, etc.) with the benefits of organic functionality (low dielectric properties). This paper describes the plasma deposition of an SiOC film and methods of adjusting key parameters to extend the baseline dielectric constant to below 3.0. Data shows excellent thermal stability (< 0.5%/hour, for 8 hours at 400°C), adhesion to material types typically used in devices [Si, SiO2, SiN, SiN over SiOC, TiN, copper, aluminum, and good deposition rates (~8000 A/min). These k=3.0 data show extendibility to below 2.7.

D5.4 EFFECTS OF TEMPERATURE ON THE MECHANICAL RELIABILITY OF LOW DIELECTRIC-CONSTANT SPIN-ON GLASSES: Yaekte A. Toviold, Jeremy A. Thurn and Robert F. Cook, University of Minnesota, Department of Chemical Engineering and Materials Science, Minnesota, MN.
Spin-on glass films, formed by the polymerization of silsesquioxane (SSQ) oligomers, have great potential as semiconductor interconnection materials due to their low dielectric constants (2.5-3.1), tunable properties, compatibility with silica chemistry and extendibility to even lower dielectric constant via increased porosity. The mechanical properties of SSQ materials, however, are inferior to those of silica, particularly the resistance to moisture-assisted, residual-stress driven stress-corrosion cracking, leading to interconnection yield and reliability concerns. In addition, the underlying mechanical properties controlling cracking modulus, hardness, toughness and film stress are extremely sensitive to the time, temperature and environment used during the polymerizing curing process. In this study, the variation in the mechanical properties of an SSQ material with curing time and temperature were examined, focusing on the transition from the low modulus, high stress, under-cured state to the high modulus, low stress, over-cured state. The development of film stress was determined by in-situ measurement of wafer curvature during curing; modulus and hardness were determined by instrumented (nano)indentation. The mechanical behavior was correlated with tests on poly(dimethyl siloxane). An implication of the results is that there is an optimum intermediate curing temperature for maximum SSQ mechanical reliability.

Advanced interconnect technology incorporating both low dielectric constant material and copper has been extensively studied as a replacement for the aluminum-based interconnects and copper-oxide interconnects. Besides the need to satisfy the numerous material, electrical, mechanical and thermal properties, the process integration of low dielectric constant materials into the damascene interconnects is also important. One such integration challenge pertains to the adhesion of these low dielectric constant materials to the various contacting thin films in the damascene interconnect scheme. Poor adhesion issue would cause reliability problem. In this paper, the adhesion between spin-on organic low dielectric constant materials [FLARE from AlliedSignal and SILK from Dow Chemical] and inter-metal dielectric (e.g. silicon dioxide) or copper-diffusion barrier metal (e.g. titanium, tantalum) would be researched under the following criteria: (1) The relative position of the thin film materials to the organic low dielectric constant material (whether as a base layer or a cap layer). (2) The type of precursors used for the inter-metal dielectric. (3) The deposition temperature in the PECVD of the dielectric (performed on Advanced Materials and Mattson equipment). (4) The effect of degassing in the PECVD equipment prior to the deposition of the cap dielectric. (5) The effect of plasma surface treatment in the PECVD equipment prior to the deposition of the cap dielectric. The results of all the above would be presented and the subsequent adhesion improvement methodologies would be discussed.
D5.6 CHARACTERIZATION OF FLUOROCARBON THIN FILMS FOR LOW DIELECTRIC CONSTANT AND HIGH THERMAL STABILITY. Sung-Soo Han and Byung-Hoon Bae, Dept. of Materials Science & Engineering, KAIST, Taejon, KOREA.

α-CF thin films have been studied for low dielectric intermetal layer materials, but thermal stability has been mainly concerned, because low dielectric constant and high thermal stability are reciprocal dependence of composition in α-CF thin films. Thus, in this study, the maximum condition of composition and molecular structure of α-CF thin films for low dielectric constant and high thermal stability was investigated. α-CF thin films were deposited using ICP-CVD with various flow rate ratio of CHF₃/CF₄ gases from 1:1 to 1:10. The dielectric constants of α-CF films reduced to 2.3 with increasing CF₄ flow rate. The films were annealed at 400°C for 20 minutes in vacuum. ERD-TOF (Electron Recoil Detection - Time Of Flight) was used for quantitative compositional analysis, and the change of the α-CF bonding configuration was observed by XRD and XPS. The reduction of dielectric constant depends on α-CF bonding configuration as well as fluorine content. The optimal conditions to satisfy the low dielectric constant and high thermal stability follows, the film has to have compatible fluorine content, and the α-CF bonding configuration has to be α-CF₂ and α-CF₂ instead of α-CF₃, the structure of fluorocarbon has to be linear and short-chain for low dielectric constant. Therefore, the optimal processing condition will be provided.

D5.7 PROPERTIES OF LOW DIELECTRIC CONSTANT CYCLO-HEXANE-BASED PLASMA POLYMER THIN FILMS DEPOSITED BY PLASMA-MEDICATED CHEMICAL VAPOR DEPOSITION. Jeeyoung Yung, Jayoung Choi, Yong Chan Quan, Hyunuk Cho, Dongyeun Jung, Sungkyunkwan Univ., Dept. of Physics, Suwon, SOUTH KOREA.

Low dielectric constant (k ≤ 3) materials are important in reducing interconnect RC delay and crosstalk noise in multilevel metallization of ultra large scale integrated (ULSI) devices. Polymers can be considered as a promising low k material due to the relatively low k values and high thermal stability. Plasma polymers which are formed by gas phase polymerization of monomers by plasma are easy to be introduced into the semiconductor manufacturing process because thin films of plasma polymers can be deposited by widely used plasma enhanced chemical vapor deposition (PECVD). In this work, we report on the investigation of the properties of cyclohexane-based plasma polymers (CHexP) as functions of the deposition pressure and the plasma power. As the deposition pressure was decreased from 2 torr to 0.2 torr with a fixed plasma power of 60 W, k value of the CHexP thin film increased from 2.42 to 3.24. CHexP thin films deposited at lower deposition pressure showed higher thermal stability, and the CHexP thin film deposited at 0.2 torr was stable up to 400°C. As the plasma power was increased from 5 W to 90 W with a fixed plasma power of 0.2 torr, k value increased from 2.36 to 3.39. The CHexP thin film deposited at 90 W was stable up to 450°C. All the films were deposited under pressure of 1 MV/cm, launch current densities were ≤ 10⁻⁷ A/cm².

D5.8 HIGH-TEMPERATURE MECHANICAL BEHAVIOR AND PHASE MORPHOLOGY OF POLY(TETRAFLUOROETHYLENE)/SILOXANE NANOCOMPOSITES USED AS ULTRA LOW-K DIELECTRIC LAYERS. W. L. Gore & Associates, Inc., Elkton, MD; Shidum Qu, Tom Rosenzweig, W. L. Gore & Associates, Inc., Elkton, CA; Min Y. Lin, National Institute of Science and Technology, Gaithersburg, MD.

Poly(tetrafluoroethylene) (PTFE)/siloxane nanocomposites have been prepared as ultra low-k dielectrics. These nanocomposites show excellent high-temperature mechanical properties compared to unfilled PTFE while their dielectric constant almost remains unchanged. Specifically, the dynamic mechanical study indicates that these nanocomposites have the mechanical behavior similar to that of cross-linked polymers. Small angle neutron scattering (SANS) has been carried out to characterize the phase morphology of the PTFE/siloxane nanocomposites and the size of the inorganic networks. It has been shown that no phase separations or orientations appear in these nanocomposites in the range of 16 to 469 nm. These SANS results suggest that these materials are single-phase nanocomposites with very homogeneous and isotropic. They are basically PTFE-based molecular composites. Results about PTFE/siloxane nanocomposite-based interconnects will also be presented.

Allied Signal's low dielectric material host HOSP (k = 2.5) is a spin-on hybrid siloxane-organic polymer designed for both copper damascene and subtractive aluminum processing. An investigation of the stability and electrical characteristics of Cu and Al metal layers on HOSP has been carried out. The leakage behavior of HOSP/Oxide/Al structures is best described by a power-law equation, and the leakage current density at 2 MV/cm is about 1e-7 A/cm² which is adequate for inter layer dielectric (ILD) applications. Bias temperature stress of the above structure leads to some initial flatband voltage shift, but no significant shift occurs. In order to investigate whether metal diffusion into HOSP occurs, thermal diffusion studies (upto 400°C) with blanket metal/HOSP films were carried out and RBS was used to analyze for metal diffusion. The cohesion measured between metal-HOSP layers were explored and standard diffusion barriers/adhesion promoters such as TiN and Ta were evaluated. These results will be discussed in view of the suitability of HOSP as an ILD.

D5.10 STRUCTURAL ANALYSES OF FLUORINE-DOPED SILICON DIELECTRIC LAYERS FILMED BY MICRO-RAMAN SPECTROSCOPY. Jeffrey L. Coffer and T. Walter Zeida, Texas Christian University, Ft. Worth, TX; Kelly J. Taylor and Scott Martin, Texas Instruments, Kilby Center, Dallas, TX.

Fluorine-doped silicon dioxide, a dielectric material compatible with copper integration, has received considerable attention for applications requiring a k value in the 3.5 to 4.0 range. Given the influence of structure on desired properties, convenient experimental structural probes of this type of material are of widespread interest. This presentation focuses on Raman spectroscopic analysis of ring defects in fluorine-doped silicon dioxide films prepared by plasma enhanced chemical vapor deposition (PECVD) as well as high density plasma methods (HDP). These measurements are complemented by ab initio computational simulations of the ring defects in these films and the impact of nearby fluorine on their stability. The impact of aging these structures and correlations of observed trends with other experimental techniques (such as X-ray and X-ray fluorescence) will also be discussed.

D5.11 STUDY OF DRY PHOTORESIST STRIPPING PROCESSES FOR HYDROGEN SILsesquioxane. Huey-Ching Liu, Jerry Dunl, Vic Finchi, Semiconductor Fabrication Materials, Dow Corning Corporation, Midland, MI, Qingyun Han, Ricky Ruffin, Fusion Systems Division, Semiconductor Equipment Operations, Encon Corporation, Rockville, MD.

As the minimum geometry of ultra large scale integrated (ULSI) devices moves below 0.2 μm, implementation of low k dielectric materials in device fabrication is needed to reduce the intracircuit capacitance between metal lines and to increase the signal propagation speed. Among low k materials, hydrogen silsesquioxane (HSQ) has succeeded in the semiconductor device production due to its low dielectric constant (k ≤ 3.0), excellent gap fill and planarization capability. HSQ has been used in production for 0.13-0.5 μm device technology. However, the ability to apply HSQ with current device technology is the photoresist (PR) stripping step. HSQ films are sensitive to the amine based PR stripper used in wet PR stripping process and oxygen used in the traditional O₂ downstream plasma stripping processes. HSQ film damage leads to via bowing and higher via resistance. Therefore, there is a need for developing a new PR stripping process for HSQ in the applications of deep submicron devices. Recently, the dry PR stripping processes for HSQ have been studied to develop a new effective process to replace wet stripping process to HSQ. In this study, the impacts of the stripping chemistry and process conditions on the removal selectivity and HSQ film properties have been identified. Better results were observed at lower pressure, higher process temperature, and O₂ free gas chemistry conditions. The processes and film measurement results will be discussed.

D5.12 COMING STUDY OF HYDROGEN SILsesQUOXANE IN H₂/N₂ AMBIENT. Huey-Ching Liu, Evane Dehne, Jerry Dunl and Fred Dall, Dow Corning Corporation, Semiconductor Fabrication Materials, Midland, MI.

As the minimum geometry in integrated circuits (ICs) continues to shrink to the 0.18-0.25 μm range, the capacitance between metal lines increases dramatically which causes the delay in signal propagation. Low-k dielectric materials can be implemented to reduce the capacitance. Among low k materials, hydrogen silsesquioxane (HSQ)
has succeeded in the semiconductor device production due to its low dielectric constant (~3.3), excellent gap fill and planarization capability. HSQ has a theoretical structure of [HSO₃]⁻[Si₂O₅]₂⁺ before film formation. When thermally processed into films, the Si-H bonds in HSQ dissociate and its structure is rearranged into a random network structure. The degree of Si-H bond loss, which is determined by the process ambient, time, and temperature, will strongly impact the HSQ film properties. It has also been shown that HSQ will lose more SiH bonds when processed in an O₂ ambient and/or higher process temperatures above 400°C. Therefore, it is the objective of this work to investigate if the loss of Si-H bond can be suppressed by processing in a H₂ ambient and to understand the impact on the film properties. In this study, HSQ films were cured in N₂ and H₂/N₂ ambient and different temperatures and the resulting film properties, including dielectrics constant and modulus, were measured. It shows that processing HSQ in a higher percentage of H₂ ambient can suppress the loss of SiH bonds and maintain its film properties at higher process temperature (>400°C). The details results will be discussed.

D5.13
MECHANICAL CHARACTERISTICS OF POLY (METHYL-SILOXANE) THIN FILMS. K. Char, S.H. Chu and D. Kim, School of Chemical Engineering, Seoul National University, KOREA.

Poly(methyl-siloxane) (PMSSQ) is very attractive for BEOL low-dielectric thin films in advanced ULSI microelectronic devices. In this regime, mechanical properties of PMSSQ are quite important since the films should withstand severe mechanical stress conditions generated by chemical mechanical planarization (CMP) processes and thermal expansion mismatch of the multilayer BEOL films. With the underlying silicon layer. Using nanoindentor and microvickers tests, we have measured the hardness, modulus and crack-propagation velocity of PMSSQ films prepared from samples with different initial molecular weights and varying chemical structures. Moreover, the details of crack morphology and the effect of PMSSQ chemical structure on surface topography were also examined with atomic force microscopy. The micromechanical characteristics of PMSSQ films are known to depend on the curing conditions as shown by previous works. However, the effects of curing conditions and, more importantly, the final micromechanical properties of cured samples are found to be strongly correlated with the molecular weight and its distribution of initial PMSSQ samples as well as with the details of the PMSSQ chemical structure.

D5.14

The replacement of silicon dioxide by materials with lower dielectric constant in metallization schemes becomes mandatory as the technologies push toward the 100 nm node. The use of low-k materials helps to reduce the capacitance between adjacent lines, resulting in the decrease of RC-delay and parasitic capacitances, thus improving device performance. They are also useful for reducing crosstalk.

AURORA is an inorganic low-k material deposited in a ASM EAGLE-10 PECD reactor. It is in Si-O-C base with low C concentration (20–25%). A dielectric constant of 2.7 was measured from metal/dielectric/metal capacitors and the film showed leakage values in the order of 10⁻⁹ A/cm² at 0.1 MV/cm. In this paper we discuss the basic film characteristics, such as film stability, degrading properties and adsorption/leaching of chemicals. The AURORA films are integrated in 0.18 μm technology using single dielectric film and electrical results - line length, interline capacitance and leakage - are presented and compared with the ones of single damascene oxide.

D5.15
Transferred to D4.9

D5.16
MICROSTRUCTURE AND ELECTRICAL PROPERTIES OF THIN FILM SILICA AEROGELS AS A FUNCTION OF PROCESSING METHOD. Christine Caragain-Benzbridge, John R. Mieczkowski, Dept. of Engineering, Trinity College, Hartford, CT. Jun-Ping Hsu, Wenguan Zhu, Zhijong Lu, Dept. of Electrical Engineering, Yale University, New Haven, CT.

Aerogels are nanoscopic materials with unique optical, thermal and electrical properties. Silica thin film aerogels demonstrate great potential as low dielectric constant insulators for interlevel dielectric applications. The focus of this research was the fabrication of thin film silica aerogels while utilizing a chemical structure of [HSO₃]⁻[Si₂O₅]₂⁺ before film formation. When thermally processed into films, the Si-H bonds in HSQ dissociate and its structure is rearranged into a random network structure. The degree of Si-H bond loss, which is determined by the process ambient, time, and temperature, will strongly impact the HSQ film properties. It has also been shown that HSQ will lose more SiH bonds when processed in an O₂ ambient and/or higher process temperatures above 400°C. Therefore, it is the objective of this work to investigate if the loss of Si-H bond can be suppressed by processing in a H₂ ambient and to understand the impact on the film properties. In this study, HSQ films were cured in N₂ and H₂/N₂ ambient and different temperatures and the resulting film properties, including dielectrics constant and modulus, were measured. It shows that processing HSQ in a higher percentage of H₂ ambient can suppress the loss of SiH bonds and maintain its film properties at higher process temperature (>400°C). The details results will be discussed.

D5.17
PHOTO-DEPOSITION OF LOW DIELECTRIC CONSTANT POROUS SILICA FILM AT ROOM TEMPERATURE. Jun-Ying Zhang and Ian W. Boyd, Electronic & Electrical Engineering, University College London, Torrington Place, London, UNITED KINGDOM.

As device densities increase and chip dimensions shrink, propagation delay, crosstalk noise, and power dissipation become significant due to reduced interconnect capacitance (RC) coupling. Integration of low-k dielectrics, such as [SiOₓ]ₖ materials, means that reducing RC time delays for Si integrated circuits, has been identified for 0.1 μm technology and beyond. Current low-k commercialization emphasizes spin-on glasses (SOGs) and fluorinated silicon dioxide SiO₂₋ₓ, and a number of polymers are under development with k in the range of 3.3. These suffer from potential problems including thermal stability, mechanical and electrical properties, low thermal conductivity, and reliability. However, low-k dielectric nanosilica materials with tuned k values from 1.4 have the advantage of facilitating manufacturing of higher performance integrated-circuit (IC) devices because of compatibility with standard microelectronic processing and the ability to tune k over a wide range. In this paper we report the formation and electrical properties of porous silica silicon dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The effects of substrate temperature and cure exposure time on the formation of porous silica dioxide films on Si (100) substrates at low temperatures (25-200°C) by photoassisted sol-gel processing using 172 nm radiation from an excimer lamp. The results show that the photochemical induced effects initiated by the UV radiation enable both reduced processing times and reduced temperatures to be used.

D5.18
ULTRA LOW-K INORGANIC SILICOSILXANE FILMS WITH TUNABLE ELECTRICAL AND MECHANICAL PROPERTIES. Thomas A. Deis, Chandran Shin, Eric Moyer, Kyu-ahn Chung, Youlun Liu, Mike Spaulding, John Allbaugh, Wei Chen and Jeff Bremmer, Dow Corning Corporation, Midland, MI.

Low-k dielectric nanosilica materials have been developed using a new silicoxine based chemistry that allows both the electrical and mechanical properties to be tuned to specific values. By controlling the composition and film processing conditions of spin-on formulations, dielectric constants in the range 1.5 to 3.0 are obtained with modulus values that range from 2 to 20 GPa. The modulus and dielectric constant are tuned by controlling porosity which varies from 0 to 60% and the film composition which is a function of [HSO₃]⁻[Si₂O₅]₂⁺ before film formation. The spin-on formulation includes hydrogen silicoxine resin and...
solvents. Adjusting the ratio of solvents to resin in the spin-on formulation controls porosity. As-spun films are treated with ammonium and moisture in a vacuum. These films are used as self-supporting gel. Solvent removal and further conversion to a more "silica-like" composition occur during thermal curing at temperatures of 400°C to 450°C. The final film composition is controlled through both solvent and crosslinking of the film. Film properties are optimized for a balance of electrical, mechanical and thermal properties to meet the specific requirements of a wide range of applications. Processed films exhibit no stress corrosion cracking or delamination after aged 100%. Films exhibit high adhesive strength (> 60MPa) and low moisture absorption. Processing conditions, compositions and properties of thin films with thicknesses between 3,000 to 10,000 Å will be discussed.

D5.19
LOW DIELECTRIC PROPERTIES OF SPIN-COADED MEOSICOS/MOSIC FILMS. Akira Enoki, Shin Ishii, Misumoto, Minoru Nakamata, Tsukuba, Japan; National Institute of Materials and Chemical Research, Tsukuba, Japan; Takeo Yamada, Hsin Chen, Shu-Zhu, Itaru Honma, Electrotechnical Laboratory, Tsukuba, Japan.

Mesoporous silica film is expected to be a candidate for low K material in microelectronics applications. Highly ordered mesoporous silica films, which have different mesostructure with hexagonal, cubic, and lamellar, were prepared by rapid sol-gel spin-coating technique using self-assembled surfactant templates and their dielectric properties were measured. The thin films were prepared as follows: The solution for spin-coating was prepared by mixing TEOS, 1-propanol, and water. After drying at 100°C, the films were annealed at 400°C for removal of surfactant. The structure of the film (mesopore, pore size, porosity and thickness etc.) was characterized by low angle XRD, SEM and gas adsorption technique. Dielectric properties were measured for the films which have different pore size and porosity using an AC impedance technique. Mesoporous silica films were compared with the value estimated from the porosity of the films.

D5.20
STRUCTURE AND PERFORMANCE OF ULTRA LOW-K SILICEOUSXANE BASED DIELECTRIC DURING SUBSEQUENT THERMAL PROCESSING CYCLES. Yufan Lu, Eric Meyer, Kyuhun Chung, Thomas Deis, Mike Spachling, Dow Corning Corporation, Midland, MI.

Porous silica-like ultra low-k dielectric films have been developed by introducing small pores into hydrogen-silicousxane (HSQ) based resin for future generation integrated circuit technology. With tunable dielectic and mechanical properties, depending on film porosity and stoichiometry, this low-k dielectric offers a great potential for use as low-k interlayer dielectric applications. The films have a porosity of 50-60%, and Si-H bond density and density of Si-OH were determined by performing complex impedance measurements and using neutron scattering technique, respectively. The properties are designed to allow integration of the ultra low-k dielectric into copper damascene applications. In this study, the thermal stability of subsequent thermal processing cycles has been evaluated. The spectroscopic ellipsometry, and infrared spectroscopy techniques were used to evaluate structure impacts on dielectric and mechanical properties. The complex dielectric constant at 1MHz and modulus were determined by performing complex impedance measurements and using neutron scattering technique, respectively. It was demonstrated that the dielectric properties of the ultra low-k dielectric are extremely stable under multiple thermal cycles at 450°C for 60 minutes in N₂. All electronic and atomic contributions to the dielectric constant remained the same although Si-H bond density decreased by 10%. There was no change in film porosity, but the mechanical properties were further increased. The improved film thicknesses formed in 2020 were 450-500 Å, film modulus increased from 3 to 5 GPa after these thermal cycles. The structure-property-process relationship will be discussed.

D5.21
CHARACTERIZATION OF PORES AND COMPOSITION OF LOW K POROUS THIN FILMS. Wei Chen, Thomas A. Deis, Ch meltdown. K. Soh, Eric S. Hung, Dong-Kyo Chung Dow Corning Corporation, Midland, MI, Eric K. Lim, Gary W. Lynn, Wen-Hsi Wu, Polymer Division, National Institute of Standards and Technology, Gaithersburg, MD.

Until recently porous silica thin films were the primary candidates of inorganic low k materials for interlayer dielectric applications. A new class of mesoporous silica-like thin films (based on Dow Corning hydrogen silicousxane (HSQ) resin) with a wide range of electrical and mechanical properties, has been developed. This new class of low k films is produced by the ammonium treatment followed by a thermal cure near 400°C of a pre-spin film. The pre-spin films are generated from mixtures of solvents and HSQ resin. The dielectric constant (k) of the film increases upon addition of about 1.5% ammonium for 30 minutes. The high film thickness (greater than 60 MPa) and low moisture absorption. Processing conditions, compositions and properties of thin films with thicknesses between 3,000 to 10,000 Å will be discussed.

D5.22

Nonporous thin films have been identified by the microelectronics industry as an important class of materials for use as low-k interlevel dielectrics needed for next generation electronic devices. Unlike traditional homogeneous materials, the structure of the porous network critically affects properties needed for their integration into current fabrication lines. We have developed a methodology combining small angle neutron scattering (SANS), high resolution x-ray reflectivity (HRXR), and ion scattering to determine important structural information about porous films on silicon wafers. This methodology is used to provide quantitative measurements of the average pore size, pore connectivity, film thickness, matrix material density, coefficient of thermal expansion, moisture uptake, and film compositions. These properties are provided to aid industry in the selection of candidate materials and processes to be used in next generation integrated circuits.

D5.23
GRAZING INCIDENCE SMALL ANGLE X-RAY SCATTERING (GISAXS) STUDY ON LOW DIELECTRIC THIN FILMS. C.-H. Hsu, Hsin-Yi Lee, Ting-Shu Lin, S.-L. Huang, Synchrotron Radiation Research Center, Hsinchu, Taiwan; T.-M. Lu, Center for Integrated Electronics, Electronics and Information Technology, Remsail Polytechnic Institute, Troy, NY; C. Jin, Texas Instruments, Dallas, TX.

Highly porous silica films with pore size in the nanometer scale are being extensively studied as potential candidates for interlevel dielectrics. Because the dielectric materials appears in the form of thin films with several hundred angstroms thickness, some conventional techniques cannot be readily applied to study their structure and porosity. We employed small angle scattering in the grazing incidence geometry in this study. Using high resolution x-ray beamline with synchrotron radiation source, the average pore size and its distribution can be readily obtained. The porous properties of solgel derived silica xerogel films on silicon substrate obtained by GISAXS will be discussed.

D5.24
CHARACTERIZATION OF POROUS SILICA DEVELOPED BY UNION CHEMICAL LABORATORIES. C.J. Wang, Y.T. Chen, T.Y. Lo, H.S. Chen, Union Chemical Laboratories, Industrial Technology Research Institute, Hsinchu, TAIWAN ROC.

Porous silica can be used in ILD applications owing to its lower dielectric constant and tunable property. In the light of its sensitivity in application to different technology node, Union Chemical
Laboratories (UCL) has developed several precursors of porous silicon using different formulations. The new formulations are suitable for use in chemical vapor deposition (CVD) processes. Optical properties of porous silicon films deposited on Si are characterized by variable angle spectroscopic ellipsometry (VASE). The feasible curing conditions were obtained by inspecting the response such as film thickness, porosity, and refractive index. A two-phase solid structure model could explain the spring-back property which makes the skeleton more resilient to stress. This is confirmed by the linear relationship between thermal stress and temperature, which is measured by bending beam method. The solution of the problem can be solved using FIBS analysis. After curing at 1400°C, the desired functional group for modification still exists. The dielectric constant read from CV curves in MS measurement is well below 2.0. The films coated on Si, PETEOS SiO₂, Si₃N₄, TiN and Ta all pass the tape test.

D5.25

Xerogel films of wide range of porosity (25-90 %) and uniform thickness (0.4 - 2 microns) were fabricated on various substrates. Precise control of the evaporation of ethanol from the film during spin coating allows for porosity control over such a wide range. A relation was developed between the final film porosity and the ethanol vapor concentration in the spin coating ambient. Mechanical reliability as a function of aging time and temperature was determined by measuring the fracture toughness of the xerogel thin film. Films should be aged at the highest possible temperature to get the maximum fracture toughness and there appears to be optimum aging time at 90°C to obtain maximum fracture toughness. Thin (~ 500 Å) films of Copper on xerogel (Cu/xerogel) system were subjected to thermal annealing. No diffusion was observed within the limits of RBS if the annealing was done in a completely inert, oxygen free, environment. SMIS analysis of Cu films annealed on xerogel and thermal oxide films showed significant Cu diffusion into the thermal oxide yet no diffusion into surface-modified xerogels. Balance thermal stress testing of Si/SiO₂/Xerogel/Cu structures was performed to amplify and quantify any trace amounts of copper that may diffuse through surface-modified xerogels.

D5.26
SOL-GEL DERIVED SILICA LAYERS FOR LOW-k DIELECTRICS APPLICATIONS: Sylvie Acosta, André Ayrat, Christian Guizard, Laboratoire des Matériaux et Procédés Membranaires, E.N.S. Montpellier, FRANCE, Charles Lecerf, Gérard Passenlé, Mehdi Moussavi, LETI/DIME/TCI, Grenoble, FRANCE.

Porous silica exhibits attractive dielectric properties which make it a potential candidate for use as insulator into interconnect structures. A new way of preparation of highly porous silicon layers by the sol-gel route was investigated and will be presented. The synthesis strategy was based on the use of low cost and low toxicity reactants and on the development of a simple process without gaseous ammonium post-treatment or supercritical drying step. Defect free layers were deposited by spin coating on Si wafers or on SiO₂. They were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, residual stress analysis, nitrogen adsorption, ellipsometry and dielectric constant measurements. Layers exhibiting a total porosity larger than 70% with an average pore size of 5nm were produced. The dielectric constant measured under nitrogen flow on these highly porous layers is equal to ~ 2.5, which can be compared to the value theoretically expected from the measured porosity, ~ 1.75. This difference is explained by the presence of water adsorbed on the hydrophilic surface of the unmodified silica. The effect of the synthesis and deposition parameters (sol composition, hydrolysis conditions, aging time, aging atmosphere) on the porosity and related properties of the final layers will be discussed.

D5.27
STRUCTURE AND PROPERTIES OF LOW-DIELECTRIC POLY (SILSESQUIOXANE) FILMS: EFFECTS OF MONOMER STRUCTURE, INITIAL MOLECULAR WEIGHT AND CURE TEMPERATURE. D. Y. Yoon, Seoul National Univ, Dept of Chemistry, Tae Suhn and Sung W. Park, Department of Chemistry, Kyungpook National University, Daegu, Korea, CA; R. L. Jaffe, NASA Ames Research Ctr, Moffett Field, CA; K. Chung, E. Moyer, C. Yeake, Dow Corning Corp, Midland, MI.

We have investigated the local structures of poly(hydridosilsesquioxane) (PHSQ) and poly(methylhydridosilsesquioxane) (PMSQ) films of various initial molecular weights in function of cure temperature. Changes in the measured IR spectra were analyzed using quantum chemistry calculations. Predicted vibrational frequencies and IR intensities for model molecules representing various cage and ladder-type structures. PHSQ starts from more symmetric cage like structures and transforms to highly non-symmetric structures due to the loss of Si-H groups as the annealing temperature increases above 300°C. In comparison, the initial structures of PMSQ films vary significantly with molecular weight, but when heated to 430°C, all films show more non-symmetric ladder-like structures with no dependence on the initial molecular weight. Dynamic mechanical measurements carried out during the initial heating process show that the films become vitrified due to intermolecular cross-linking chemical reactions in the solid state. The nature of intermolecular cross-linking varies significantly with the initial molecular weight. Moreover, these changes in local structures are found to be manifested in the dielectric and mechanical properties of PHSQ and PMSQ films as function of their curing temperatures.

D5.28
MECHANICAL STRESS ANALYSIS FOR DUAL INLAID COPPER INTERCONNECT STRUCTURES IN SEMICONDUCTOR DEVICES: Yasheng Feng, Computational Technologies Lab, Motorola Inc., Austin, TX; Paul Besser, AMD-Motorola Alliance, Austin, TX; Matt Herrick, APRIL, Motorola Inc., Austin, TX; Jeff Wetzel, SEMATECH, Austin, TX.

Since interconnect structures will limit the device performance for sub-0.15 micron devices, the semiconductor industry has investigated interconnect structures other than aluminum and silicon oxide. One of the alternate technologies is Cu interconnects with low-k dielectrics. However, Cu interconnect structures, dual inlaid or damascene structure in particular, post various challenges in terms of manufacturability and reliability. One major challenge has been mechanical reliability of the edge-core, including stress-induced features and material compatibility. In this presentation, we will characterize mechanical stress in Cu damascene structures with X-Ray Diffraction. A finite element model will address temperature and linewidth effects on the mechanical stress, in order to understand the evolution of stress during the deposition and annealing process. The microstructure (texture and grain size) will also be related to mechanical and thermal stress. The results show that the principal stress components in the Cu line are largely dependent on the post-anneal aging temperature. We also find that the inter-layer dielectric strongly affects mechanical stress, along with other factors such as process conditions and interconnect geometry.

SESSION D6 BARRIER AND SEED LAYER-DEPOSITION TECHNIQUES

Wednesday, Morning, April 26, 2010

Golden Gate B2 (Marriott)

8:30 AM D6.1
WHAT ARE THE LIMITS OF IONIZED PHYSICAL VAPOR DEPOSITION? Jeffrey A. Hogwood, Electrical and Computer Engineering Department, Northeastern University, Boston, MA.

Integrated circuit interconnects formed using the damascene process consist of high aspect ratio trenches and vias that are etched in an interlayer dielectric and subsequently filled with diffusion barrier materials and metal conductors. Unfortunately, magnetron sputtering – the dominant industry workhorse process for depositing metal – is not capable of directly depositing material into high aspect ratio features encountered in modern ICs. One of the most widely employed techniques of extending the usefulness of magnetron sputtering is ionized physical vapor deposition (IPVD). In IPVD, sputtered atoms are ionized by a high density plasma prior to being deposited at the substrate. The electric field present in the plasma sheath adjacent to the substrate accelerates ionized sputtered species perpendicular to the wafer. The flux of collimated ions produced by IPVD is capable of depositing high-quality films into deep, narrow structures. This presentation will discuss the use of IPVD in the deposition of copper seed layers, as well as titanium and titanium nitride diffusion barrier layers. The physical mechanisms that govern the plasma will be described both through experiments and models. Key issues are limited deposition rate, the degree of ionization, and imperfect ion collimation. These physical descriptions of IPVD will be evaluated in terms of improvements to IPVD tools and the fundamental limits of the IPVD technique as applied to interconnect fabrication.

9:00 AM D6.2
ADVANCES IN DEPOSITION TECHNOLOGY FOR Al AND Cu INTERCONNECTS. John Bostock, Applied Materials, Santa Clara, CA.

Much of the "glamour" associated with microelectronics has long been the creation of ever faster and smaller transistors, with interconnect technology being a boring, but unavoidable companion. The trend in integrated circuit manufacturing towards more and more metal layers
has transformed interconnect technology from a poor relation of front end processing to a highmamour equal, complete with all the dedicated symposium, conference, and exposition materials.

Advances in interconnect technology have occurred due to advances in deposition and etch technology, and due to introduction of new materials. This talk will describe advances in the metallization portion of interconnect technology.

Against the popular belief, interconnect technology based on conventional W plugs is alive and well. The challenges facing conventional W plug technology include developing processes and hardware to fabricate the feature size requirement, process temperatures for integration with lower k dielectrics. An example of a successful new technology has been the integration of ionized Ti PVD with CVD TiN to form the liner/interlayer prior to W plug formation.

Conventional Al technology is used for slub applications and plug fill. The use of ionized Ti PVD undergoes prior to Al slub deposition can improve the Al film properties. New Al PVD sources help in developing the necessary need for Al plug fill. A major advance in interconnect technology is the introduction of copper. This has involved the introduction of several new technologies, ionized Ta or TaN/AlD as a diffusion barrier.

Ionized Cu PVD is used as a seed layer for subsequent fill by Cu electroplating. The introduction of new materials always involves lengthy studies to evaluate reliability and integration issues.

9:30 AM D6.3
SEED LAYER DEPOSITION FOR SUB-0.25 MICRON Cu METALIZATION USING A LINE CUSP MAGNETRON PLASMA SOURCE. S. Ogawa, H. Sato, S. Nakagawa, M. Sawada, Shinichi Hasuo, and Yoshio Numazawa, Aculon Corporation, Tokyo, JAPAN.

In Cu interconnect technology, the deposition of Cu seed layer for electroplating is a critical process, particularly in sub 0.25 micron via holes with aspect ratio > 5. Further, deposition of uniform Cu seed layer over the entire surface of Si wafer and uniform side coverage in via holes regardless of their position on the wafer are also important to eliminate faulty interconnects. Taking all these facts into consideration, a magnetically enhanced capacitive plasma source with a planar Cu target (electrode) was developed for 200 mm wafer processing. In this planar target, magnets were arranged on the upper surface of the Cu target in radial lines with alternating polarity to generate line cusp magnetic fields below the Cu target. With this arrangement, a magnetic field free environment can be obtained for wafer processing at around 50 mm distance from the Cu target. In addition, magnets are arranged to yield a uniform plasma at the wafer level in order to yield a uniform deposit and to eliminate possible charge-induced damages. The Cu target is given 60 MHz rf power and the process is carried out at pressures in the range of 6 Pa to 8 Pa. Use of magnetic field and high frequency rf power results in an increase plasma density and thereby an excellent side and bottom coverage. The deposition rate obtained is > 200 nm/min while the film density over 200 mm wafer is ~ 10 g/cm3. Sheet resistance of the Cu film is < 2 micro ohm cm.

10:15 AM D6.4
ATOMIC LAYER CVD FOR CONTINUOUSLY SHRINKING DEVICES. Susi Halska, Kai Eilers, Marko Tuominen, ASM Microchemistry Ltd, Espoo, FINLAND.

The continuous shrinking of semiconductor devices makes great demands on thin film deposition technology. The deposition method should enable the growth of uniform ultrathin films on large surface areas with atomic layer accuracy. Furthermore this atomic layer accuracy should also be realized in extremely high aspect ratio vias and on irregular shaped surfaces to attain the best device performance. The atomic layer deposition technique is called Atomic Layer Deposition (ALCDV). The ALCDV technique was developed in Finland in the early 1970s by Dr. Tuomo Suntola. Dr. Suntola's very simple and revolutionary idea was to introduce the precursors sequentially to the surface and allow the reactive sites at the surface to control the film growth. This was contrary to conventional CVD where the precursors are introduced at the same time to the surface and the growth is controlled by the precursor flux intensity or the time of the growth. It has been shown in practice that the surface control in ALCDV (atomic layer-by-layer growth) can be realized when the following conditions are fulfilled: 1. In the growth temperature window, a covalent bond between the reactive site on the surface and the precursor is formed (chemisorption). No condensation or decomposition of the precursor is allowed to take place. 2) An excess of precursor molecules is introduced to the surface to complete the reaction with all available reactive sites, and the precursor is surface saturated. 3) After each reaction the surplus precursor molecules and the reaction by-products are removed by sufficient inert gas purge. It will be shown in the presentation that the systematic utilization of these principles in the thin film growth leads to a process of pinhole free, conformal ultrathin films on large area substrates.

10:45 AM D6.5
STRUCTURAL AND CHEMICAL CHARACTERIZATION OF TiN THIN FILMS DEPOSITED BY ALCDV AS BARRIERS FOR Cu METALIZATION. Alessandra Sattar, Gerald Beyer, Karen Moek, IMEC, Leuven, BELGIUM; S. Huskin, ASM Microchemistry Ltd, Espoo, FINLAND; André Vanrumste, K.U. Leuven, IKS, Leuven, BELGIUM.

The application of copper as interconnect metal in advanced multi-level metalization schemes needs the prevention of Cu diffusion into the active layer and into interlevel dielectrics by total encapsulation of Cu with barrier films. Critical requirements for diffusion barriers are very thin thickness, low resistivity, low deposition temperature, conformality on high aspect ratio trenches and vias.

For this purpose, TiN films deposited by Atomic Layer Chemical Vapour Deposition (ALCDV) were proposed and compared to TiN films deposited by Ionized Metal Plasma technology (IMP). The structural and chemical characterization of ALCDV and IMP TiN films was carried out by means of resistivity measurements, ellipsometry, Rutherford backscattering spectroscopy, X-ray diffraction, TEM, AFM.

ALCDV TiN films, deposited at 400°C exhibit a resistivity range of 150-250μΩcm as well as IMP TiN films in the same range of thickness (1,500 Å), but ALCDV TiN deposited at 350°C show resistivity values of 400-500μΩcm. The density of ALCDV TiN deposited at 400°C is very close to the bulk value, higher than IMP films and ALCDV TiN films deposited at 350°C. Cr content of ALCDV TiN deposited at 400°C is 1.5 %, whereas the process temperature at 350°C it is twice as much as at 400°C (3%). Both ALCDV and IMP TiN films show columnar structure and texture of < 100 > strong orientation, but different surface morphology and grain size distribution. ALCDV films are characterized by a fine-grained microstructure and by a surface roughness lower than IMP TiN films that exhibit a larger distribution of distinctively developed grains. A very high level of conformity on trenches and remarkable thickness uniformity characterize ALCDV TiN films deposited at the two different temperatures. These properties give a clear advantage over the sputtered IMP TiN whose coverage in high aspect ratio vias is known to be limited for the future IC technology.

11:00 AM D6.6
A NOVEL SCHEME OF CVD-DIFFUSION BARRIERS FOR Cu METALIZATION. Kyungs-Ho Kim, Young-Ho Lee, Soo-Hyun Kim, Se-Joon Im, and Kibum Kim, School of Materials Science and Engineering, Seoul National University, Seoul, KOREA.

We have investigated the effect of a thin Al interlayer deposited between chemical vapor deposited (CVD) diffusion barrier (TiN and TaN) and Cu on diffusion barrier performance in Cu metalization. Both CVD-TiN and CVD-TaN films were thermally deposited using tetrakis(dimethylamido)tinum (TDAM) and pentakis(diethylamido)stannum (PDEAT) as precursors, respectively, on a TiN deposited Cu seed layer as a barrier layer. Cu and Al were sputter deposited onto barrier films without breaking vacuum in a DC magnetron sputtering system. The thickness of Al layer was varied from 0 nm (Cu/barrier/Si), 5 nm, 10 nm, i.e., and 20 nm. The thickness of Cu was 300 nm in all the samples. The sputtering conditions were as follow: the base pressure of deposition chamber was lower than 5 x 10^-6 Torr, the deposition pressure was 4 mTorr using Ar as a plasma gas, and sputtering power was 30 W for Al deposition rate 20 nm/min) and 100 W for Cu (deposition rate 100 nm/min), respectively. To test the diffusion barrier properties, all the structures were annealed under vacuum below 5 x 10^-6 Torr, and at the temperature ranging from 500°C to 700°C for 1 hour. Diffusion barrier properties were characterized by sheet resistance measurement with a four-point probe, X-ray diffractometry (XRD), etch pit observation by scanning electron microscopy (SEM), and cross sectional transmission electron microscopy (XTEM). It was identified that a thin Al interlayer with a thickness of about 10 nm significantly improved the barrier property of the layer. For instance, the 20 nm thick CVD-TiN layer which formed after annealing for 1 hour at 600°C did not exhibit after 650°C annealing with a thin Al interlayer. The improvement of the barrier property is also demonstrated in the case of CVD-TaN layer.

11:15 AM D6.7
A STUDY ON CVD TaN AS A DIFFUSION BARRIERS FOR Cu INTERCONNECTS. Se-Joon Im, Soo-Hyun Kim, Sung-Rye Cho, Ki-Bum Kim, School of Materials Science and Engineering, Seoul National University, Seoul, KOREA; Hyun-Chul Park, Samsung Electronics Co. Ltd, Kihang, KOREA.
Tantalum nitride film was deposited by chemical vapor deposition with the aid of ion beam (ion-beam induced CVD, IBICVD). The IBICVD system consists of two parts: One is the deposition chamber and the other is the ion beam source. The ion beam source is composed of the plasma tube and two grids. The upper grid is electrically floated to repel most of the electrons and attract ions from the plasma. The lower grid is biased to potentials to direct and accelerate the ions. The ion beams are used to bombard the film surface during film growth and thereby increase the film density. The ions have the energies between 1.15 eV and 1.5 eV [1]. Ion current density is about 1 to 2.5 µA/cm² at lower grid bias 200 V. TaNx films were deposited using pentakis(diethylamido)tantalum (PDEAT) as a precursor under the bombardments of N₂, Ar, or H₂ ion beam. For comparison, two kinds of thermally-deposited TaN films were prepared. One was deposited using PDEAT as a single precursor and the other used PDEAT as a precursor with hydrogen. In case of Nb IBICVD, deposition rate leveled off in the whole temperature range. In case of thermal CVD, the deposition rate was controlled by the surface reaction rate with an activation energy of about 1.0 eV. The activation energy of Ar and H₂ IBICVD was about 0.3 eV. The film resistivity was decreased with increasing deposition temperature except Ar IBICVD case. It also showed that the film resistivity of IBICVD TaNx was lower than that of thermally grown TaNx. The minimum resistivity of TaNx films was about 600 µΩ-cm, which was deposited at 2500°C by using Ar ion beam. TaNx films (50µm) deposited at 250°C were tested as diffusion barriers for copper. After 650°C annealing, all the sheet resistance increases dramatically.

11:30 AM D6.5
THE 2.2,6,6,7-TRIMETHYL-3,5-HEPTANEDIONONE ROUTE TO THE CHEMICAL VAPOR DEPOSITION OF COPPER FOR GIGASCALE INTERCONNECT APPLCATIONS

A new class of copper(II) precursors has been developed for the chemical vapor deposition (CVD) growth of copper for applications in ultralarge scale integration interconnect schemes, including conformal seed layer for gigascale Cu integration and ultrathin Cu lines with enhanced conductivity characteristics. The synthesis is described of the sila-β-diketone 2,2,6,6,7-pentamethyl-3,5-heptanone (tmhdH) in good yields, (60%) via a Claisen type condensation of acetyldimethylsilane with trimethylacetylene. Copper acetate was allowed to react with the ligand to yield the precursor Cu(tmhdH)₂, which has been sublimed and characterized by thermogravimetric and elemental analysis and mass spectrometry. Cu(tmhdH)₂ is appreciably more volatile than the corresponding monosilane Cu(tmhd)₂ and Cu(tmhd) (tmhdH = 2,2,6,6,7-pentamethyl-3,5-heptanone; tmhd = 2,2,7-trimethyl-3,5-cyclohexadiene). The complex crystallizes in the orthorhombic space group Pnma with a = 10.256(1) Å, b = 11.692(8) Å, c = 22.928(6) Å, V = 2716(1) Å^3. The packing diagram reveals that the molecules are well separated in the solid suggesting that the intermolecular separations are slightly greater than that of Cu(tmhd)₂ or Cu(tmhd). The CVD process employs Cu(tmhdH)₂ as the metal precursor and reducing and hydrogen carrier gas. The deposition tool was a custom-built, cold wall, stainless steel CVD reactor equipped with electronic mass flow controllers, and appropriate delivery systems. Copper films were produced at a substrate temperature of 250°C, 300°C, 350°C, and 400°C at flow rates of 20 - 100 sccm, deposition pressure of 2 - 1 Torr, and source temperature of 120 - 150°C. The films were analyzed by x-ray photoelectron spectroscopy, transmission electron microscopy, four-point resistivity probe, Rutherford backscattering spectrometry and Auger electron spectroscopy. Key findings from these studies will be reported and discussed. In particular, resistivities as low as 0.1 µΩ-cm were achieved for Cu(tmhdH)₂-based thin films.

11:45 AM D6.7
A SEEDLESS ELECTROCHEMICAL PLATING PROCESS FOR Cu-BASED INTERCONNECTS
Chin-Hsiun Lo, Wei-Tsu Tseng, Shih-Chin Lee, Dept. of Materials Science & Engineering, National Cheng-Kung University, Taiwan, TAIWAN.

Since the advent of Cu-based metallization for sub-0.25µm ULSI interconnects, electroplating or electroless (i.e., electrochemical) plating technique has replaced sputter as the mainstream deposition process for Cu. Both processes, however, require the deposition of a sputtered Cu layer. The low Cu deposition rate concerns over uniformity and microstructural quality. This inevitably raises the process complexity and cost of ownership for process integration. In this study, a one-step seedless electrochemical deposition process for Cu thin films is developed for Cu-based interconnects. The Cu thin films were successfully deposited without the need of Cu seed layers. The Cu films have two benefits of being useful for Cu interconnects: Cu thin films had containing buffer H₂, nitric acid, and Cu ions is adopted and the TiN/Ti/Ta oxide wafers are used as the substrate. A resistivity of 2.2 µΩ-cm and a deposition rate of ~220 µm/min can be constantly achieved. For comparison, Cu films deposited on Si substrates with a 20 µm layer on TaN/Ta barrier are also included. Heating of the substrate before deposition was found to further improve the adhesion of Cu deposition. Chemical analysis employing XPS and ESCA will be performed to investigate the Cu deposition rate and the Cu deposition mechanism. This seedless deposition process will be applied to fill in MIT density patterned wafers with minimum feature of 0.25 µm. Organosilan-based surfactant will be added to improve the wettability of Cu. The properties of the Cu-polyimide barrier of the Cu films deposited on the Cu interconnects will be evaluated. Last but not the least, the CMP behavior of the Cu deposited will be evaluated.

SESSION D: INTERCONNECTS
Wednesday Afternoon, April 20, 2000
Golden Gate B2 (Marriott)

1:30 PM D7.1
FABRICATION AND PERFORMANCE LIMITS OF SUB-0.1 µm Cu INTERCONNECTS T.S. Kang, C.K. Jacob, G.S. Oehrlein, Dept. of Physics, Univ at Albany, SUNY, Albany, NY; K. Rose, Y. Zhao, G.C. Wang, Rensselaer Polytechnic Institute, Troy, NY; S.M. Rossangul, C. Cubral, IBM T.J. Watson Research Center, Yorktown Heights, NY.

As the on-chip interconnect linewidth and film thickness shrink below 0.1 µm, the size effect on Cu resistivity becomes important, and the electrical performance deliverable by such narrow metal lines needs to be evaluated critically. From the fabrication viewpoint, it is crucial to determine how structural parameters affect resistivity in the sub-0.1 µm feature size regime. We have fabricated test structures containing 50±0µm Cu lines wrapped in Ta-nitride liners and embedded in insulating SiO₂ to form a typical back-end lithography, high-density plasma-etching, ionized PVD Cu deposition, and chemical-mechanical planarization processes. Direct current (16 pA) resistance measurements from these 50±0µm-wide Cu lines indicate a distribution of resistivity about 3.5 times that of bulk Cu values. To evaluate quantitatively the scaling of resistivity with thickness and to determine the scattering parameter ρ at the Cu liner interfaces, we have also fabricated a series of TaCu/Cu/TaSiO₂ thin film structures with Cu thicknesses ranging from 1 µm to 0.2 µm. As film thickness decreases from 60 to 20 nm, a standard model predicts a 25% to 75% increase in resistivity, assuming 100% diffuse scattering ρ = 0 at atomically flat Cu surfaces. However, a far larger (~2.5 x) size effect is measured from our sub-0.1-µm-thick, TaCu lines. Cross-sectional TEM and surface AFM observations suggest that the observed larger resistivity increase can be attributed to Cu/Ta surface roughness and limited grain growth in ultrathin Cu films. Monte Carlo simulations are used to demonstrate the effect of carrier scattering at Cu/Ta interfaces and to quantify the extra resistivity resulting from interface roughness.

2:00 PM D7.2
FAILURES INDUCED BY BIAS TEMPERATURE STRESS in Cu/BiCH INTERCONNECTS. Taihsu Cho, Paul S. Ho, Microelectronics Research Center, University of Texas at Austin, TX; Sung U. Kim, Volker Blumrich, Semtech Inc., Austin, TX.

Copper/low-k interconnects are proposed to replace Aluminum/SiO₂-based interconnects for improving performance and density of deep submicron interconnects. Since Cu easily diffuses into an adjacent dielectric material, a highly efficient barrier is needed to avoid interconnect failures induced by Cu diffusion. In order to realize Cu/low-k interface interconnects, Divinyl Siloxane-Bisphenol-Cyclobutane (DVS-BCC) as an interlayer dielectric and Ta as a barrier layer were used to form single layer test structures to evaluate the electrical reliability of Cu/low-k interconnects. When the test structures were tested under bias temperature stress (BTS) conditions to accelerate Cu diffusion, two types of device failures were observed. One type was early-failure due to defects in the diffusion barrier. Although the Ta barrier was supposed to cover Cu lines completely, Cu diffused quickly through defects in the barrier under BTS of 200 deg. C in these devices. The activation energy for Cu drift was found to be 0.9eV, which is similar to the activation energy found for structures without barrier. Another type of failure occurred due to Cu diffusion through grain boundaries in the barrier layer, for devices where the barrier covered the Cu lines well. The failure process was much slower than for the early-failures and the time-to-failure was almost comparable to that of intermetallic Cu/SiO₂ interconnect structures. In this case, the time-to-failure is determined mostly by the barrier material and not the dielectric.
2:15 PM D7.3
TANTALUM-NITRIDE DIFFUSION BARRIER STUDIES USING THE TRANSIENT-ION-DRIFT TECHNIQUE FOR COPPER DETECTION. Thomas H. Heiser, Christophe Brochard, Univ. Louis Pasteur, Laboratoire PHASE-CNRS, Strasbourg, FRANCE; Marie Swenon, STMicroelectronics, Orailles, FRANCE and Royal Philips Electronics, Eindhoven, THE NETHERLANDS.

Although diffusion barriers are a key part of the copper interconnect technology, a quantitative method for evaluating the barrier efficiency against copper diffusion in terms of time and temperature is still missing. In this work we show that the recently developed transient-ion-drift (TID) technique, which can detect a bulk copper concentration as low as 10⁻¹⁴ cm⁻³, is particularly well suited for diffusion barrier investigations. The method assumes that the bulk copper concentration from the capacitance transients of a Schottky barrier which shifts upon copper ions drift out of the depletion region towards the quasi-neutral region. The permeability of a thin tantalum nitride barrier studied in this work has been studied by monitoring the bulk copper concentration, with TID, after various heat treatments. The spatial correlation between the copper contamination and the localized copper sources is used to distinguish between background contamination and copper impurities that have crossed the barrier. Defining the efficiency of the barrier in terms of the ratio between the copper concentration and its solubility limit as a function of the thermal stress. For instance, no copper is detected after two hours at 500°C, while at 600°C the copper solubility (7×10⁻³⁴ cm⁻³) is reached within about two hours. Combining the quantitative characterization of the barrier efficiency by TID with already existing experimental tools will allow to determine the relationship between barrier breakdown kinetics and film microstructure.

2:30 PM D7.4
RELIABILITY OF TANTALUM BASED DIFFUSION BARRIERS BETWEEN COPPER AND SILICON. Tomi Laitinen, Keijo Zeng, Jorma Kivilahti, Helsinki University of Technology, Lab of Electronics, Production Technology, Espoo, FINLAND; Jerzy Mokhiria, Bika Suni, VTT Microelectronics, Espoo, FINLAND.

Recently considerable interest has been paid to use Cu as on-chip metallisation in microelectronic devices, mainly due to its lower electrical resistivity and higher electromigration resistance compared with aluminium. In order to reliably utilize copper metallisation in integrated circuits a diffusion barrier layer must be used to stop the copper from diffusing from the metal line to the oxide in which the metal is embedded. Many studies have been put into this area for the past two decades and will be put into for many years to come. Cu technology is much more complicated than Al interconnect technology. It requires diffusion/drift barriers to prevent CuPd from diffusing into Cu and Si substrates. Many candidates have been evaluated for this purpose, such as Ti, TIN, Ta, SiN, W, etc. Most previous research is focused on these materials’ adhesion promotion and barrier effect. It is also well known that these refractory metals also cause stress in Cu film. In our experiment, we will focus on how these thin film barriers affect Cu microstructures and stress in the Cu interconnect lines, and therefore affect the reliability issues of Cu wires. Our Copper interconnects were fabricated using lift-off process. A Leica electron beam lithography tool was used to directly write all the patterns. Five different linewidths were used in this experiment, varied from 2μm to 0.25μm. The length of all lines was 800μm. Electron beam evaporation was used to deposit Cu (350nm) and various barrier layers on these wafers. SiN (0.2μm) and SiO2 (0.4μm) were deposited as passivation layer using plasma-enhanced chemical vapor deposition at 350°C. All samples were annealed at 450°C for 30 minutes in a N2 (10%) / H2 (90%) mixture.

An Atomic Force Microscope was used to investigated the microstructures of Cu film. Various microstructures have been observed in our initial experiment. Significant grain growth after annealing was also observed. Various methods of the samples have been used to monitor the stress and microstructures in Cu film, including wafer curvature method and X-ray diffraction. From our initial data, we found that the stress in Cu film has a strong relationship with its environment and its process history. Electromigration tests have been conducted on various samples. Our results show that microstructures of interconnect lines affect the lifetime of Cu interconnect. The interconnect with smaller linewidth showed longer lifetime, since narrower lines usually have bamboo or near-bamboo structures which have less grain boundaries. Electromigration activation energy of one kind of sample has been obtained at this moment. The activation energy of our Cu/2μm wide CuSi(350nm)/TiSiN(200nm) lines is 0.7eV. The stress effect and linewidth effect on Cu reliability is under further investigation.

4:00 PM D7.7
NEAR-FIELD PHOTOLUMINESCENCE AND RAMAN SPECTROSCOPY OF DEFECTS AND STRAIN IN COPPER DAMASCENE INTERCONNECT STRUCTURES. Grover C. Wetzal and Austin J. Cunningham, The University of Texas at Dallas, Richardson, TX; Daniel B. Shappell, Johns Hopkins University, Baltimore, MD; Robert Kraft, Texas Instruments, Inc., Dallas, TX.

Demands for higher speed and lower power consumption in the next generation of semiconductor logic and memory devices dictate that interconnect dimensions shrink to 150 nm or less and that new materials and processes be used in integrated-circuit manufacturing. Early identification and control of the process-induced defects and strain is of critical importance to the yield and reliability of semiconductor circuits. Future generations of ICs will be required to allow device yield and reliability to reach acceptable commercial levels. In this context we report on the use of near-field optical spectroscopy to measure process-induced defects and strain. Spatial measurements of copper concentrations across sectioned Cu-silicide damascene structures relate to Cu confinement across different Ti, Ta, and SiN barrier combinations and contact points. Near-field optical techniques, where the lateral definition is of the order of the size of the aperture, are required to accommodate the submicrometer design rules. A near-field scanned optical microscope (NSOM), capable of measuring simultaneous topographical and optical images is being directed to this application. A near-field scanning near-field optical microscope (NSOM) is used to measure the photoluminescence in porous Si with an optical definition of the order of 20 nm, operated as a near-field Raman spectrometer, the NSOM-measured Raman shift allowed determination of mean microcristalline sizes as small as 2.8 nm in porous Si. In addition, we measured near-field optical probe (NSOM), which uses a sharpened metal probe, is being developed to improve the lateral optical definition to the order of 1 nm or better. Results will be reported on Cu diffusion across barriers of different thickness, on strain, and on degradation at metal localized dielectric interfaces. Preliminary results on strain measurements before and after annealing will be included.

3:45 PM D7.6

Copper has been chosen as the interconnect material to replace aluminum-based alloys for advanced IC circuits. It has lower resistivity and higher electromigration. Many new technologies have been put into this area for the past two decades and will be put into for many years to come. Cu technology is much more complicated than Al interconnect technology. It requires diffusion/drift barriers to prevent CuPd from diffusing into Cu and Si substrates. Many candidates have been evaluated for this purpose, such as Ti, TiN, Ta, TaSiN, W, etc. Most previous research is focused on these materials’ adhesion promotion and barrier effect. It is also well known that these refractory metals also cause stress in Cu film. In our experiment, we will focus on how these thin film barriers affect Cu microstructures and stress in the Cu interconnect lines, and therefore affect the reliability issues of Cu wires. The Copper interconnects were fabricated using lift-off process. A Leica electron beam lithography tool was used to directly write all the patterns. Five different linewidths were used in this experiment, varied from 2μm to 0.25μm. The length of all lines was 800μm. Electron beam evaporation was used to deposit Cu (350nm) and various barriers on these wafers. SiN (0.2μm) and SiO2 (0.4μm) were deposited as passivation layer using plasma-enhanced chemical vapor deposition at 350°C. All samples were annealed at 450°C for 30 minutes in a N2 (10%) / H2 (90%) mixture.

An Atomic Force Microscope was used to investigated the microstructures of Cu film. Various microstructures have been observed in our initial experiment. Significant grain growth after annealing was also observed. Various methods of the samples have been used to monitor the stress and microstructures in Cu film, including wafer curvature method and X-ray diffraction. From our initial data, we found that the stress in Cu film has a strong relationship with its environment and its process history. Electromigration tests have been conducted on various samples. Our results show that microstructures of interconnect lines affect the lifetime of Cu interconnect. The interconnect with smaller linewidth showed longer lifetime, since narrower lines usually have bamboo or near-bamboo structures which have less grain boundaries. Electromigration activation energy of one kind of sample has been obtained at this moment. The activation energy of our Cu/2μm wide CuSi(350nm)/TiSiN(200nm) lines is 0.7eV. The stress effect and linewidth effect on Cu reliability is under further investigation.

4:15 PM D7.8
QUANTITATIVE METROLOGY STUDY OF IC Cu/SiO2

97
Tungsten is a very promising material for the bit line application in the advanced DRAM technology owing to its lower resistivity than conventional W-poly and the capability of forming contacts to both Na+ and P+ active areas. However, high thermal budget after the bit line formation can easily degrade the contact characteristics on the active region, especially in the COB (Capsule Over Boosted) line type DRAM. In this paper, we have extensively developed the thermally stable W bit line structure using PVD Ti/PVD TiN as a barrier layer and RTF for the formation of silicide contact. In this work, the barrier structure of PECD Ti/CVD TiN was investigated to solved the coverage problem and then reduce the total process steps by in-situ silicidation. The properties of co-deposited Ti thin films were examined using various characterization methods, such as XRD, SEM, ESCA, AFM and TEM. The roughness of Ti films and sputtered during deposition of Ti deposition were controlled by adjusting process parameters, especially TiCl4/H2 flow ratio for the reliable junction property. Based on the contact resistance and junction leakage current data, we optimized the process and then the PECD Ti/CVD TiN was successfully integrated with CVD W for the bit line application in the deep sub-quarter micron DRAM.

D8.3

A SHIFTING PHENOMENON OF INTERCONNECTION LINES ON BPSG FILM DUE TO SUBSEQUENT THERMAL PROCESS FOR SUB-QUARTER MICRON CMOS FABRICATION

Recently, the density of semiconductor devices has increased due to the advances in device and process technology including the planarization technology. We investigated quantitatively, for the first time, the shifting phenomenon of polysilicon interconnection lines on planarized BPSG (Borophosphosilicate Glass) film after subsequent thermal process. The shifting of polysilicon interconnection lines depends due to BPSG film reflow, which results in the interconnection line bridge and thus device failure, was not observed in the cell region but in the periphery region. The shifting distance of interconnection lines becomes more than 0.3um depending on the topological differences, pattern density and on the process temperatures. The shifting was observed in the CMP (Chemical-Mechanical Polishing) planarized BPSG film. The device failure originating from this phenomenon makes its detection almost impossible unless the appropriate test patterns are provided. For quantitative study, the various process temperatures (e.g. 800°C, 850°C), and the Boron and Phosphorous contents in BPSG film were extensively examined for different line and spacing interconnections (Design Rule: 0.18um to 0.5mm). Also, to find out the process conditions for minimum shifting distance without adding extra process steps (e.g. formation of metal contact spacer), the experimental study for various dielectric materials (e.g. LP-TEOS, PECVD SiN and USG film etc.) including the optimizing BPSG film thickness was conducted. Our combined process integration offered very stable process tools with high reliability for manufacturing sub-quarter micron CMOS devices and beyond technology.

D8.4

BACKSIDE COPPER CONTAMINATION ISSUES IN CMOS PROCESS INTEGRATION - A CASE STUDY

K. Prasad, K.C. Lee, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, SINGAPORE; L. Chan, A.K. See, Chartered Semiconductor Manufacturing Ltd., Singapore, SINGAPORE.

Experimental results are presented on the effects of deliberately contaminating the backside of silicon wafers with fully functional MOS devices. MOSFETs with various channel lengths down to 0.25 μm were fabricated on silicon using this method to assess the impact on device performance. Conventional SALICIDE process was implemented. The wafers were thinned down to 250 μm by back grinding. The backside of the sample was deposited with 500 nm PVD Cu. The samples were subsequently annealed in nitrogen ambient at 400°C for times up to 10 hours. Various MOS parameters such as the threshold voltage Vth, transconductance gm, drain saturation current IDSAT, output IDS, and gate leakage current Igs, were monitored during the annealing. Also monitored was the leakage currents of Na+ and P+ n junction diodes. The experimental results show that the presence of copper on the backside of the wafers during annealing did not affect the MOS parameters. MOSFET parameters remained unchanged even after 100 hours of annealing. Also the junction leakage current did not change after 10 hours of annealing. Conventional calculations of copper diffusion depth show that copper should diffuse all the way through the wafer after only 30 minutes of annealing. If so, the device properties should show degradation. However, the results from our study show that copper has not diffused all the way into Si.
investigate the diffusion of copper, SIMS analysis was performed after 10 hours of annealing. Copper was stripped from the backside of the wafer before SIMS. SIMS measurements indicate that copper diffused into silicon only over a very short distance of around 300 nm from the backside of the wafer. X-ray diffraction studies revealed that a layer Cu$_2$Si was formed at the backside of the wafer. We believe that the formation of copper silicide, in addition to any copper precipitation in silicon, is responsible for slowing down the diffusion of copper into Si. Copper concentration beyond 300 nm from the backside of the wafer was below the SIMS detection limit. Similarly, the Cu$_2$Si concentration on the front side of the wafer was, again, below the detection limit. Thus, the regions where the active devices are present have either no copper or very little copper, well below the SIMS detection limit. As a result, the electrical parameters of MOSFETs from different wafers are not affected despite the presence of backside copper contamination. Thus, we believe that the backside copper contamination may not pose serious problems in copper integration.

D8.5 MEASUREMENT OF LOCALIZED STRAINS IN NARROW INTERCONNECTS BY CONVERGENT-BEAM ELECTRON DIFFRACTION

R.R. Keller, National Institute of Standards and Technology, Materials Reliability Division, Boulder, CO; J.A. Nucci, S. Krömer, Max-Planck-Institut für Metalforforschung, Stuttgart, GERMANY.

Convergent beam electron diffraction (CBED) was used to investigate localized lattice strains in both sputtered aluminum and damascene copper interconnects with thickness ranging from 10 to 20 nm. CBED provides measurements from areas of approximate diameter 10 to 100 nm, which enabled evaluation of trivalent strain states within individual grains. Lattice parameters were determined by measuring the Bragg order line (HOLZ) line position in experimental zone axis patterns and comparing them to kinematical and dynamical simulations. Quantitative comparison was accomplished using a least squares analysis of distance between line intersections. The precision in strain determination was zone dependent, ranging from 10 to 100 nm, depending on the HOLZ reflections present. The AI interconnects locally exhibited large elastic strains due to thermal mismatch with the substrate and the corresponding stresses were much higher than the bulk yield strength. Deposition-induced strains in evaporated copper lines resulted in lattice distortions up to 3 x 10$^{-5}$. In addition to enabling analysis of localized strain states, another advantage of using CBED is that the microstructure and strain state can be simultaneously evaluated. This technique yields results complementary to those obtained by global methods such as X-ray diffraction and may provide insight into localized failure phenomena.

D8.6 IN SITU ELECTROMIGRATION INDUCED STRAIN MEASUREMENTS FROM SINGLE GRAINS IN PASSIVATED AL AND Cu CONDUCTORS OR LINE INTERCONNECTS

X-ray microdiffraction is a powerful tool for investigating materials on a micron length scale, particularly for direct measurement of strain in encapsulated interconnect structures. We used microdiffraction for the study of electromigration induced strains in interconnects on BNL-NSL8 bonding magnet headline X6A with a 7 μm x 7 μm white x-ray beam formed by pinhole collimation, with a useful energy range of 6 keV to 30 keV. Energy-dispersive diffraction measurements were made for AI single grains in symmetric-reflection and asymmetric-reflection modes to map out the trivalent strain in a polycrystalline 2.6 μm wide, 300 μm long, 0.5 μm thick AI conductor line under 1.5 μm SiO$_2$ passivation. Four sets of [hkl] AI planes were measured before and after trivalent strain measurement along the interconnect. All reflections were tracked in both real and reciprocal space during electromigration. Measurements were made on the conductor line under electromigration at 270°C, 4100 A/cm2 in both forward current and reverse current conditions. Resistance measurements were made concurrently to correlate electromigration damage with measured local strain. Results for electromigration strain development will be discussed.

D8.7 EXPERIMENTAL STUDIES OF THE RELIABILITY OF INTERCONNECT TREES

Stefan P. Has-Riege and Carl V. Thompson, Microelectronics Research Institute, Dept. of Materials Science and Engineering, Cambridge, MA.

The electromigration resistance of simple straight-line interconnects is usually used to estimate the reliability of complex integrated circuits. This is generally inaccurate, and overly conservative at best. The shapes and connectedness of interconnects is not accounted for in standard reliability assessments. We have identified the interconnect tree as the fundamental unit. An interconnect tree consists of connected conducting line segments lying within a single layer of metallization, and terminating at two or more nodes at which there is a diffusion barrier such as a W-filled via. We performed electromigration experiments on Cu, Cu$_2$Si, and Al$_2$Cu interconnects, as well as straight lines with an additional via in the middle of the line, passing currents of different magnitudes and directions through the limits of the trees. We found that metal lines not ending in other limits can act as reservoirs for electromigration of metal atoms. Passive reservoirs, which are limits that do not carry electrical current, are generally beneficial for reliability, whereas limits that do carry electrical current, called active reservoirs, can be beneficial or detrimental, depending on the direction and magnitude of the current in the reservoir. However, our experiments show that bends in interconnects do not affect their reliability significantly. We also found that the reliability of an interconnect tree can be conservatively estimated by considering nodal minus limited-rates at the most heavily stressed junction in the tree, which can be found by analyzing the geometry and current configuration. Our experimentally verified model for tree reliability can be used with layout tools for reliability-driven computer-aided design (RCAD), through ranking of the reliabilities of trees in order to identify areas at risk from electromigration damage.

D8.8 GRAIN ORIENTATIN AND STRAIN MEASUREMENTS IN MICRON WIDE PASSIVATED INDIVIDUAL Al AND Cu TEST STRIP STRUCTURES

At the Advanced Light Source Berkeley we have, over the last few years developed equipment and systems for measuring orientation and strain of individual grains within passivated thin film interconnects with a spatial resolution of micrometers and submicron level. A white x-ray beam of typical dimensions of 1 micron in size is generated when synchrotron radiation is focused using elliptically bent Kirkpatrick-Baez mirrors in grazing incidence geometry. With white beam, layer patterns of individual grains of Cu or Al can be recorded in ~1 sec. For monochromatic light a four-bounce crystal monochromator can be inserted into the beam without disturbing the original beam position on the sample. Strain measurements are made by determining the energy of the diffracted beam with high accuracy. Using a silicon single crystal standard for calibration our goal is to achieve lattice parameter measurements with a precision of 10 ppm. The experiments can be carried out at elevated temperatures and under the stress of an electronic current. Strain measurements made with these facilities in passivated Cu and Al lines under electromigration stress will be described.

D8.9 THE INFLUENCE OF STRESS-INDUCED VOIDING ON THE ELECTROMIGRATION BEHAVIOUR OF AI$_2$Cu INTERCONNECTS

A.H. Fischer and A.E. Zschechberger, Infineon Technologies, Reliability Methodology, Munich, GERMANY.

Stress-induced voiding in metal interconnects is an important aspect of reliability methodology. The phenomenon was observed in multilevel ULSI Al-Cu metallizations, leading to voids in the metal line before electrical operation. The appearance of stress voids could be suppressed reducing the deposition temperature of a HDP CVD SiO$_2$ process. The influence of pre-existing stress voids on the electromigration performance of Cu interconnects is investigated. Four sets of four Cu lines were electromigration tested for electromigration voiding tests were performed on samples with and without pre-existing stress voids, using C1M1 line teststructures, one with a short line and the other with a long line, respectively. In the first part, the activation energy E_a and current density exponent n were determined. Between both samples no significant differences in E_a, median time to failure or shape factor s of a lognormal failure distribution were found. However, n is slightly smaller for samples with stress voids (short lines 1.4, long lines 1.0) in comparison to those without stress voids ($n=1.7$). The second part of the investigations was focused on short C1M1 signal interconnects. Here, typical bimodal failure distributions were found at 250°C for both samples, having two clearly distinguishable branches belonging to two different physical failure modes. The early branch corresponds to electromigration voiding in the line and the late branch to voiding just at the via. The stress voids were identified well assuming a superposition of two lognormal distributions. The bimodality was further investigated at various temperatures. It was
found, that failure distributions for samples with pre-existing stress voids showed a distinct bimodal behaviour down to 170°C, whilst those without stress voids became lower temperature limited. The implications of smaller current density exponents in stress void damaged lines on the extrapolated lifetime will be discussed in the paper as well as the consequences of bimodality.

D8.10

SIMULATION OF THE ROLE OF COPPER IN ELECTROMIGRATION OF A DLINJE AT(Cu) INTERCONNECTS

Aboal, Belluno, Carrani, Martinho, Vallet, Veltkamp, Weller, and Metallkunde, University of Stuttgart, Stuttgart, GERMANY.

To improve the understanding of the effect of Cu in Al(Cu) alloy in electromigration, the electromigration process in Al(Cu) lines is simulated using a 3D model. General flux expressions of both Al and Cu from microscopic parameters are used. In this simulation the parameters used are: temperature, Cu concentration, electro-migration driving force, mechanical driving force, and chemical driving force. Our results are qualitatively in accordance with some experimental observations and the time to reach a given stress is increased due to the dilution of Cu. Such result can explain the beneficial effect of Cu on electromigration damage in Al(Cu).

D8.12

ELECTROMIGRATION-INDUCED STRESS INTERACTION BETWEEN VIA AND POLYGONAL CLUSTERS

Young-Joon Park, Korea Institute of Science and Technology, Thin Film Technology Research Center, Seoul, KOREA; Young-Chang Joo, Seoul National Univ., School and Materials Science and Engineering, Seoul, KOREA.

Electromigration-induced failures are one of the most important threats to microelectronic devices. For near-subsurface interconnects, via and polygonal clusters are two most important sites of electromigration flux divergences. Electromigration behaviors of these flux divergences in a Si interconnect have been studied separately, and little has been known about the interaction between via and polygonal clusters. Conventionally, it is believed that the worst case lifetime occurs when via is just below (or above) the polygonal clusters. We have studied the interaction between via and cluster using electromigration simulation which calculates 3-dimensional stress evolution and diffusivity change during electromigration. By changing the location of the cluster with respect to the via, it has found that the worst case lifetime does not occur when polygonal cluster is just below the via, contradictory to the conventional knowledge. It can be explained by the fact that electromigration-induced stress gradient at the via depends on the distance between via and cluster. The dependence on current density, cluster length are also discussed.

D9.2

THIN SMOOTH Cu FILMS DEPOSITED IN DEEP SUBMICRON TRENCH BY PLASMA CVD REACTOR WITH H ATOM SOURCE

Miyoshi Shinya, Hong Jin Jin, Yusuke Niikura, and Kunihiro Koga and Norihiko Watanabe, Kyushu University, Dept. of Electronic Device Engineering, Fukuoka, JAPAN.

Thin smooth films of high-purity copper in deep submicron trench structures are a fundamental requirement in formation of metal interconnects in ULSI by using electroplating Cu deposition. To deposit such thin smooth Cu films in trenches, we have developed a plasma CVD reactor equipped with an H atom source in order to control independently the concentration of H atoms and the degree of dissociation of Cu(hfac)₂, since H atoms are extremely effective in removing impurities within the film and in reducing film surface roughness, and deposition rate and film conformity presumably depend on the degree of dissociation of Cu(hfac)₂. High-purity Cu films (100%) with the low resistivity of 2 μΩcm can be deposited, even with a low H₂ gas fraction of 50-67%, by using the H atom source, while high-purity films are obtained only for an H₂ gas fraction above 90% in the CVD reactor with the source. In order to evaluate Cu conformity in trench structures using the plasma CVD reactor with the H atom source, coverage shape of the Cu film deposited in a trench 0.4 μm wide and 3.25 μm deep is examined. While the coverage at the bottom of trench is 80% for the main discharge power Pₐ = 80 W, it increases with decreasing Pₐ to reach 95% for Pₐ = 15 W. These results show that a decrease in Pₐ leads to a reduction in the surface reaction probability of Cu-containing radicals, a key value of which is essential for the achievement of conformal deposition in extremely small width and high aspect ratio trench structures. We also have succeeded in depositing smooth Cu films about 100 nm thick in a trench 0.3 μm wide and 1.8 μm deep using such control.

D9.3

THE INFLUENCE OF DUAL DAMASCENE STRUCTURES ON THE CRYSTALLOGRAPHY TEXTURE AND ROOM TEMPERATURE RECRYSTALLIZATION OF ELECTROPLATED Cu

E. W. D. Walker,

B. A. Spolenak,

W. L. Brown,

G. Merchant,

M. Oi,

S. Lyon,

B. Liu,

L. M. Murray, NJ,

B. Liu,

L. Technologies, Orlando, FL.

The introduction of Cu for high performance IC interconnects represents a revolutionary change in material and architecture. Cu is being deposited by electroplating into damascene (recessed) trenches etched in SiO₂. The implications of the damascene topography on the
Silver has been explored as a potential candidate for future advance interconnects due to its lowest electrical resistivity, when compared with Al and Cu. In metalization, the Cu layer between the Ag film and underneath dielectric is necessary in order to improve adhesion and to block the diffusion of Ag ions. In this study, thin aluminum oxide (Al$_2$O$_3$) diffusion barriers have been formed in the temperature range of 400-725 °C by annealing Ag/Al bilayers on oxidized Si substrates in an ammonia ambient. Rutherford backscattering spectroscopy showed that the cut-diffused Al reacted with both the ammonia and oxygen in the ambient and enhanced the Ag film's high-temperature adhesion to the thinner original Al layers showed to improve the resistivity of the encapsulated Ag layers. The resulting Ag resistivity values are $\sim 1.75 \pm 0.35 \mu\Omega\cdot\text{cm}$. The thermal stability test of these diffusion barriers showed that these barriers perform well for 1000 h at 200 °C and Ag up to 620 °C for at least 30 min in either vacuum or flowing He=0.5% H2. This temperature is a 200 °C improvement over previously reported values for the self-encapsulated Cu and Ag films. X-ray diffraction spectra showed that Ag and Cu are in the face centered cubic (FCC) phase.

D9.7

KINETICS MODEL FOR THE SELF-ENCAPSULATION OF Ag/Al BILAYERS T.L. Alford, Y. Wang and J.W. Mayer, Department of Chemical, Bio- and Materials Engineering, NSF Center for Low Power Electronics, Arizona State University, Tempe, AZ.

A model is proposed to describe the temperature dependence of the aluminum oxide (Al$_2$O$_3$) diffusion barrier formation during a self-encapsulation process. The film thickness of the Ag layers during self-encapsulation process is modeled using an analytical solution to a modified diffusion equation. This model shows that higher anneal temperatures will maximize the retardation effect by (i) reducing the chemical affinity between Al and Ag atoms, and (ii) allowing more Al atoms to surmount the interfacial energy barrier between the metal layer (Ag) and the newly formed Al$_2$O$_3$ diffusion barriers. The theoretical predictions on the amount of segregated Al atom concentration agree well with experimental results from Rutherford backscattering spectroscopy. This model in addition confirms the passivating characteristics of Al$_2$O$_3$ diffusion barriers formed by Ag/Al bilayers annealed between 500-725 °C.

D9.8

INVESTIGATION OF DIFFERENT DIFFUSION BARRIER LAYER DEPOSITION BY PULSED EXCIER LASER ABLATION FOR Cu METALLIZATION TECHNOLOGY. M. Vedwana, A. Kamas P. Nag, University of South Alabama, Dept. of Electrical & Computer Engineering Mobile, AL; M. Shamsuzzoha, University of Alabama, Dept. of Metallurgical and Material Engineering, Tuscaloosa, AL.

An inter-diffusion barrier layer is necessary to inhibit the Cu diffusion into Si, which degrades the device performance. In this work we attempt to address this issue of the barrier layers between Cu and Si. We have grown TiN and TaN films as diffusion barriers between Cu and Si substrate, by the pulsed laser ablation technique. The structural properties have been evaluated by X-ray diffraction, which reveal the crystallinity of these films. The surface morphology of the films was investigated by atomic force microscopy (AFM). The transmission electron microscopy (TEM) studies on the interfacial properties reveal the smooth interfaces between Si substrate and the subsequent barrier and Cu films on it. The Auger electron spectroscopy (AES) were done to understand the diffusion behavior of the films. It is shown that Cu diffusion in Si is minimized. The mechanical properties of these films were evaluated using the nano-indentation technique. The electrical properties of Cu with TiN and TaN as barrier layers were evaluated for its ability to moderate Cu diffusion in the Cu/Si system. The studies reveal the enhancement in the electrical behavior of Cu because of the presence of the barrier layers. The details are discussed in the paper.

D9.9

DIFFUSION BARRIER PROPERTIES OF ZrN BETWEEN SiCOPP AND Cu C.azole, J. Kim, Byung-Chul Cho, Dept. of Materials, Bajung Yun, Dept. of Materials Engineering, Hankuk Univ, Ansan, Changwon, KOREA

We have studied sputter-deposited ZrN thin films as a diffusion barrier between Cu film and Si substrate. ZrN and Cu films were grown by DC and sputter-deposited systems, respectively. The resistivities of ZrN film are in the order of 100-150 Ω cm. And ZrN film has a good diffusion property between Cu and Si compared with that of TiN film. The effectiveness of ZrN film as a diffusion barrier will be studied using sheet resistance measurement, Auger electron spectroscopy.
transmission electron microscopy and X-ray diffraction
technologies.

D9.10
CRYSTAL GROWTH STUDIES OF METALLIC SEEDING FOR
ELECTROLESS PLATED Cu ON THE Ti-INSULATED SO2 FILM
BY PHIL JH-Lin, National Taiwan University, Dept of Materials
Science and Engineering, Hsinchu, TAIWAN, T.L. Li, National
Chiao Tung University, Dept of Materials and Engineering, Hsinchu,
TAIWAN; Y.Y. Tsao, X.W. Liu, J.W. Hsieh, H.C. Shih, National
Tung Hua University, Hsinchu, TAIWAN

Selective copper plating was carried out using Pd and Cu as metallic
analysis by plasma immersion ion implantation (PHI) on which Cu
was electrophoretically deposited in the metallic matrix of the stacked
plated target and ionized in an argon inductively coupled plasma
(ICP). The metal ions were adequately implanted into the
substrate by a highly pulsed negative bias (−4 kV). The substrate has
a layer of previously coated Ta on SO2 as a diffusion barrier by
the sputtering deposition before PHI (~0.2 μm). The implantation
doses of the samples were analyzed by SIMS and RBS measurements.
The crystallographic texture of the electroless plated copper on the
sample was analyzed by X-ray diffraction pole figure, TEM, AFM and SEM
were used to elucidate the growth mechanism of the copper film on
Pd-seeded layer and on Cu-seeded layer by PHI. A high deposition rate
and improved adhesion strength were achieved when copper
plating on the Pd-seeded samples was deposited by electrophoresis.

D9.11
THE INTEGRATION OF LOW-k DIELECTRIC MATERIAL
HYDROGEN SILSESQUIOXANE (HSQ) WITH NITRIDE THIN FILMS AS BARRIERS: Yuxiao Zeng, Linghua Chen, T.L. Alfred,
Center for Low Power Electronics, Dept of Chemical, Bio, and Materials
Engineering, Arizona State University, Tempe, AZ.

HSQ is one of the promising low-k dielectric materials used in VLSI
technology as an intermetallic dielectric to reduce capacitance-related
issues. Like any other dielectric materials, the integration of HSQ in
multilevel interconnect schemes has been of considerable technical
importance. In this study, the compatibility of HSQ with different
line/buried oxide deposition processes such as PVD, ALD, and CVD was
investigated by the use of sheet resistance measurement, x-ray diffraction,
transmission electron microscopy, Rutherford backscattering
spectrometry, elastic resonance scattering, and forward recoil
spectrometry. The refractive metal barriers, Ti and Ta, are also included
for a comparison. The degradation of HSQ films indicates a strong
underlying barrier layer dependence. With CVD nitrides or refractory metals as barrier, HSQ exhibits a better
structural property and processability than that with PVD nitrides.
In addition, the structure and property of the barrier layers have
undergone significant changes due to the interaction between HSQ and these barriers. The possible mechanisms have been discussed to
account for these observations.

D9.12
CHEMICAL VAPOR DEPOSITION OF TUNGSTEN NITRIDE
DIFFUSION BARRIERS: Roy G. Gordon, Sean T. Bury, Randy
Brocchini-Dillhard, Harvard University, Cambridge, MA.

Tungsten nitride, WN x, is a potentially important material for
barriers to diffusion of copper in the integrated microelectronics. A novel
process will be presented for the chemical vapor deposition (CVD) of
WN x. The synthesis of the liquid precursor will be described, along
with its physical properties, including its viscosity, solubility, vapor
pressure, molecular weight and spectrum, as well as its chemical
reactivity. Temperature and pressure conditions for the CVD process will
be given, along with the resulting film composition, growth rate,
electrical conductivity, step coverage and effectiveness as a barrier to
diffusion of copper.

D9.13
A COMPARATIVE STUDY OF Ti/Low-k HSQ (HYDROGEN
SILSESQUIOXANE) AND Ti/TEOS (TETRAETHOXYSILANE)
STRUCTURES AT ELEVATED TEMPERATURES: T.L. Alfred,
Yuxiao Zeng, Center for Low Power Electronics, Dept of
Chemical, Bio, and Materials Engineering, Arizona State University,
Tempe, AZ.

For the benefit of reducing capacitance in multilevel interconnect
technology, low-k dielectric HSQ (hydrogen silsesquioxane) has been
used as a passivation material in the Ahtemilch flash memory, using non-crystal
embodied scheme. The voids are consequently fabricated through the
HSQ layer followed by W plug deposition. In order to reduce the
extent of void formation and achieve good W/Al contact, thin Ti/TiN
stack films are typically deposited before via plugging. In this
case, HSQ makes direct contact with the Ti layer. The reliability of
the Ti/HSQ structures at elevated temperatures has been
systematically studied in this work by using a variety of techniques,
including four-point probe sheet resistance measurement, elastic
diffraction, Rutherford backscattering spectrometry, elastic resonance
scattering, forward recoil spectrometry, secondary ion mass
spectrometry, and thermal desorption spectrometry. These results are
also compared with those of Ti/TEOS structures. In a high-k
siloxane-based structure, where TEOS is a conventional intra-metallic
dielectric. When the temperature is below 550°C, a significant number of oxygen atoms
are observed to diffuse into the titanium layer. The primary source of
concern is believed to come from the HSQ layer. When the temperature is
above 550°C, HSQ starts to react with Ti. At 700°C, a TiO/HSQ stack structure forms. The Ti/HSQ system exhibits
a higher reactivity than that of the Ti/TEOS system. The significance of
these results has been discussed in terms of the practical applications.

D9.14
HIGH DENSITY PLASMA SILICON CARBIDE AS A BARRIER
FILM FOR COPPER DAMASCENE INTERCONNECTS:
Hicem Mounad, Seon-Mee Cho, Minoe Vellakal, Zhiang Li,
Dielectric Division, Applied Materials Inc., Santa Clara, CA.

A low k dielectric barrier/etch stop has been developed for use in
copper damascene application. The film is deposited using methane,
silane and argon as precursors in a HDP-CVD reactor. The film has a
dielectric constant of 4.2 which is lower than the dielectric constant
of conventional SiC or plasma silicon nitride (>7). Film characterization
including physical, electrical, adhesion to ILD films, etch selectivity,
and copper diffusion barrier properties show that this film is a better
barrier than silicon nitride for low k copper damascene interconnects.
As the CH4/SiH4 gas flow ratio increases, the refractive index of the
film decreases and saturates at a value of 1.7 (Fig. 1). This trend indicates that film compaction does not change significantly
above the CH4/SiH4 ratio of 6. The dielectric constant for the HDP-SiC film
is tunable and can be much lower than that of conventional SiC films
(k>7). Since the refractive index is a measure of the dielectric constant at the optical frequency, the measured dielectric constant
at 1 MHz increases with increasing n. Figures 1 and 2 show that low k
values can be obtained at high CH4/SiH4 ratios. This process regime
corresponds to a carbon-rich SiC film. Therefore, it is the substitution of silicon with carbon, which has a lower electronic polarizability
than Si, that results in a lower overall dielectric constant. We have
determined that as the HDP-SiC film becomes carbon-rich, the
leakage current density decreases, and the barrier properties to copper
diffusion improve. From SIMS profiles, HDP-SiC barrier to Cu is better than for PE or HDP SiN (Fig. 3). Carbon-rich HDP-SiC
contains considerably more Si-CH3 and Si(CH3)2 bonds (Fig. 4).
In summary, we have developed HDP-CVD based SiC film as a barrier/etch stop in Cu damascene applications. This film consists of a refractive index in the range of 1.70 to 1.90, a dielectric constant
of 4.0±0.5, a compressive stress of 1500-2000 MPa, and a leakage current of
3.6×10^-6 A/cm2 at 1 M V/cm. When integrated in situ with HDP-
FSG, an effective dielectric constant of 3.5 can be achieved (Fig. 5).

D10.1
FIBER-ACOUSTIC INTERFEROMETER FOR METAL FILM
MEASUREMENT: Mehmet Nisancioglu, Hanning Wang, Shing Lee,
Film and Surface Technology Division, KLA-Tencor Corporation, San
Jose, CA.

We describe a novel photoacoustic technique which is based on
common path interferometry for metal film thickness measurement in
IC processing. Pulses 60 to 100 fs wide, from a Ti:sapphire laser at
800 nm, are focused to a 5 microm spot on the surface, generating
picosecond acoustic pulses in the sample through the thermoelastic
effect. Echoes from film interfaces, upon arrival at the surface, lead
to a surface displacement of the order of 0.1 A. This displacement alters
the optical path length and hence the phase of a probe beam. The
acoustic pulse at the surface changes the phase efficiency, leading to
an additional phase change in the probe beam. We have developed a common path interferometer, which measures the
change in the sample immediately before the probe pulse, and after
reflection from the wafer, is delayed by approximately 1 ns. After
the pump pulse, the probe pulse of the interferometer is applied and it is thus possible to separate the probe pulse from the
output signal. Given that the interferometer is common-path and the
temporal separation between the pump and probe is short, we can
achieve extremely high sensitivities and detect phase changes of the
order of a few parts in 106 radians in a 10 Hz bandwidth in signals
obtained from film stacks used in aluminum and copper metallization
technologies are presented. It is shown that the technique has
extremely good sensitivity for tungsten and aluminum but does have
limitations for copper and its associated barrier layer. Fundamental
physical limitations for copper metrology are discussed. Furthermore,
it is shown that while a second harmonic pump would marginally help
Even though chemical vapor deposition (CVD) of Cu has been studied for the last four decades, its impact on practical physical processes associated with CVD Cu film growth is still not well understood. Many properties of thin films are directly controlled by surface morphology, which in turn is largely determined by the initial stages of deposition.

Our study describes effects of changes in process variables on evolving surface morphology during Cu(TMVS)(Hfac) sourced Cu CVD on TaN substrates using an LPCVD system. The effects of water vapor as a co-reactant were studied in terms of surface morphology of the present surface morphology variations for each process variable with RMS roughness, grain size, short-range roughness, and normalized roughness (RMS roughness divided by film thickness). Surface roughness increases quickly at deposition temperatures above 473 K. Within the ranges of conditions studied, the lowest normalized roughnesses are achieved at 473 K substrate temperature.

In an effort to improve surface morphology by enhancing the nucleation stage of deposition, water vapor is introduced during deposition. High nuclei density with uniform size can be achieved by introducing water vapor. Depositions with water vapor during the initial stage result in lower roughnesses, larger grain sizes, and lower short-range roughness compared to depositions without water vapor. From this study, we conclude that water vapor enhances Cu nucleation and that a relatively small amount of water vapor before or during the initial stage of deposition improves surface morphology in terms of roughness and grain size.

The purpose of this experiment was to study the effect of either a heat treatment or hydrogen plasma or a combination of both on the surface of Cu films. The chemical state of the Cu surface is of interest as it may influence the adhesion of dielectric layers to Cu or the adhesion of Cu in damascene structures. Prior to the treatment, Cu films had been deposited by sputtering and stored in the clean room for several weeks. It was found that the main desorption products due to the two-minute thermal treatment at 350°C were oxygen, water, carbon monoxide, and carbon dioxide as determined with a mass spectrometer. The desorption occurred in two steps, which is interpreted as being due to the desorption of first loosely bonded species on the surface of Cu followed by the desorption of chemisorbed species. When the Cu surface was first exposed to a hydrogen plasma and then thermally treated, the second desorption products were found during the second treatment. This shows that the plasma also removes the adsorbates. From photoelectron spectroscopy studies it was found that the Cu surface contains both bonded and un-bonded electronic states. After the treatment only the neutral state of Cu is present. The surface concentration of Cu increases whereas the concentration of O decreases. The desorption and spectroscopy results point to a chemical state of the Cu surface which is most likely a mixture of Cu hydroxides and carbonates. As demonstrated those compounds can efficiently be removed by both treatments. Ellipsometric studies before and after the various treatments confirm that the cleanliness of the Cu surface improves due to the thermal and the plasma treatment. The results also indicate that the surface roughness of the Cu increases for the latter treatment, but remains unchanged for the former.

The study of Ta as a diffusion barrier in Cu/SiO2 structures reveals that Ta is a suitable diffusion barrier, especially when compared to Al. The resistance to Cu diffusion through Ta is due to the formation of a diffusion barrier layer, which inhibits the diffusion of Cu into the oxide. The Ta diffusion barrier effectively prevents the formation of anodic SiOx during the deposition process.
SESSION D1/G7
JOINT SESSION
GRAIN EVOLUTION OF METALS
Thursday Morning, April 26, 2000
Golden Gate B2 (Marriott)

8:30 AM *D10.1/G7.1
TEXTURE, MICROSTRUCTURE, AND ROOM TEMPERATURE RECRYSTALLIZATION IN ELECTROPLATED COPPER FOR ADVANCED INTERCONNECTS. M.E. Gross, Bell Labs, Lucent Technologies, Murray Hill, NJ.

Cu is rapidly being adopted as the primary metallization for interconnects in extreme large scale interconnect (XLSI) devices. The interfaces, microstructure, and texture of the Cu all factor into processing in such that it is a relatively flat microstructure at the lowest metallization level to several microns at the uppermost levels. Cu interconnects are today being fabricated by electroplating Cu into dual damascene structures consisting of trenches and via etched in SiO2. A thin (≤100Å) spatter of Cu seed layer over a refractory metallized diffusion barrier serves as the cathode for plating. The texture of the barrier layer as well as the topography of the damascene structure both influence the texture of the electroplated Cu. A new sidewall texture component was identified in damascene Cu samples. Following plating, the electroplated Cu undergoes recrystallization at room temperature that advantageously produces large grains for improved electromigration resistance. This recrystallization process is influenced by the damascene topography. Interestingly, the recrystallization of the EP film at room temperature can also drive grain growth in sputtered Cu underlayers that can be as much as twice the thickness of the EP layer. It is this recrystallization that allows for variation in the various aspects of the texture, microstructure, and room temperature recrystallization of electroplated Cu in damascene and dual damascene architectures, with a modification of the underlying mechanisms. 1 C. Lingk, M.E. Gross, W.L. Brown, J. Appl. Phys. 74, 682 (1993). 2 C. Lingk, M.E. Gross, J. Appl. Phys. 84, 5547 (1998).

9:00 AM D10.2/G7.2
MACRO- AND MICROTEXTURE OF COPPER METALLIZATION LAYERS MEASURED BY ACOM IN THE SEM. R.A. Schwarzer, A. Hout, Dept. of Physics, Technische Univ. Clausthal, GERMANY; A.H. Fischer, RM MET, Infineon Technologie GmbH, Munich, GERMANY.

Control of (crystal) texture is important for process optimization of metallization layers. Conventional pole-figure measurement by x-ray diffraction (XRD) is limited to areas larger than 0.1 mm wide. By oscillating the specimen under the stationary primary beam, a spherical meridian from about 1 cm2 is obtained. A uniform area scan, however, and hence an unbiased texture cannot be guaranteed. An additional incoherence of x-ray pole-figure data may be caused by the variation of information depth with specimen tilt. A further drawback is the limited availability of x-ray texture goniometers. Automated Crystal Orientation Measurement (ACOM, EBSD) in the SEM is a novel tool for studying microstructure in interconnects on a grain specific scale. Commercial EBSD systems with digital beam scan, however, are not made for scans across large specimen areas at low SEM magnifications. A mechanical stage scan (OMS) on the other hand, is limited, although the scanned field size is only limited by the travel of the stage.

With the ACOM system named ORKID, both the position of the pattern center (which marks the reference directions) and the specimen-to-screen distance are calibrated automatically, as well as the lens focus is corrected dynamically from scan point to scan point when the beam travels across the steeply tilted surface [1]. Therefore specimen areas as large as with XRD can be scanned to acquire large populations of grains, in addition to mapping small areas at single line width resolution, without sacrificing accuracy of orientation measurement or spatial resolution. At present, speed of ACOM with digital beam scan at 20,000 frames per hour is the limiting factor.

From the ACOM database, the ODF and pole figures have been calculated for comparison with x-ray measurements. The benefits and limitations of texture determination by ACOM will be discussed.

9:15 AM D10.3/G7.3

Future generations of ULSI technology will rely heavily on micron and sub-micron Cu interconnections fabricated in damascene architecture. Damascene Cu structures are typically formed by electroplating Cu in trenches etched into SiO2. Observations of ex situ X-ray diffraction (XRD) and locally by electron backscatter diffraction (EBSD). New texture components have been observed that originate from the sidewall of the trench and from the etched Cu surface [12]. In this work these SiO2 X-ray micro-diffraction (XRMD) and locally by electron backscatter diffraction was applied. While x-rays were focused on a micron spot size by Kirk Patrick-Baez mirrors. The sample was stepped under the micro-beam and a line image was obtained at each sample location using a CCD area detector. In order to demonstrate the effect of sidewall on the texture, lines with widths ranging from 0.3 μm to 5 μm and depths of either 0.5 μm or 1 μm were investigated. Subsequently, the lines were examined by broad-beam XRD, focused ion beam (FIB), and EBSD. We will compare the local volume information from XRMD to area volume information from broad-beam XRD and to surface orientation information from EBSD to quantify the microstructure of damascene copper.

9:30 AM D10.4/G7.4
THE ROLE OF ASPECT RATIO ON MICROSTRUCTURE DEVELOPMENT IN DAMASCENE PROCESSED INTERCONNECTS: MODEL PREDICTIONS AND EXPERIMENTAL RESULTS. John E. Sanchez, Jr., Juan Dominguez, Materials Science and Engineering, University of Michigan, Ann Arbor, MI.

Advanced interconnect structures consist of damascene-processed trench metallization lines in which the aspect ratio, defined as trench depth to linewidth, is significant. One of the biggest microstructure and interconnect reliability requirements is the optimization of both line grain size and texture orientation. Given the anisotropic surface and interfacial energies of the FCC Cu and Cu choices for metallization, minimum energy orographic lines in the damascene architecture are a function of aspect ratio (β) and damascene processing details. We have modeled the competition between driving forces arising from surface trench + bottom interface energy minimization and trench sidewall interface energy minimization. Energetic competition between variously oriented bamboo grains is illustrated. Results of global energy minimization indicate that (111) out-of-plane + (110) sidewall oriented grains are preferred when the aspect ratio is less than 3.3 and (110) out-of-plane + (111) sidewall orientation is preferred when the aspect ratio is greater than 2. A preferred (100) out-of-plane + (100) sidewall texture orientation is predicted at the transition aspect ratio ≈ 2. Grain texture evolution in high aspect ratio trenches is therefore driven by the minimization of trench sidewall interfacial energy, whereas the grain structure in within low aspect ratio lines is determined by surface and trench bottom interface energy minimization. Comparisons of this model are made to recent experimental results of crystallographic texture and grain size in damascene-processed Al and Cu interconnects. The drag effect of grain boundary grooving on bamboo boundary mobility is described. The surface groove drag plays a minimum energetic driving force role for bamboo boundary motion which is dependent on damascene line aspect ratio. The groove drag therefore limits in general the competition between variously oriented bamboo grains. However the global minimum energy grain orientations, (111) out-of-plane + (110) sidewall at low aspect ratio and (110) out-of-plane + (100) sidewall at high aspect ratio, are maintained. The effects of groove drag and damascene sequence processing options on damascene microstructure development are described.

10:15 AM D10.5/G7.5

Low resistivity (< 6 μΩ-cm) Cu-Al alloys have been recommended for application as the diffusion barriers/adhesion promoters for advanced copper-based metallization schemes. This approach to barrier formation is to generate a ultra-thin interfacial layer through Cu-Al alloying without significantly affecting the resistivity of Cu. In this paper the microstructure of the boundaries of Cu/Cu-Int, SiAl and vicinal sputter deposited on SiO2 before and after thermal annealing is investigated by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The x-ray diffraction spectra of Cu-Al samples on SiO2 show that the addition of Al into Cu tends to favor the Cu (111) texture. The Al peak appears on x-ray diffraction spectra after annealing indicates that Al segregates at the interface to promote the interfacial reaction of Cu-Al with SiO2 interface. Ongoing diffraction spectra, TEM microstructure data will be presented and discussed, and will show films of Cu doped with Al appear to set as a suitable barrier and adhesion promoter between SiO2 and Cu.
10:30 AM D10.6/G7.6
EARLY STAGES OF SURFACE AND MICROSTRUCTURE DEVELOPMENT IN "GLYCOLYzing" GROWTH ON POLYCRYSTALLINE THIN FILMS. John E. Sanchez, Jr., Adriana E. Lina, Materials Science and Engineering, University of Michigan, Ann Arbor, MI.

Surface roughness, grain size, and morphology, and crystallite orientation are important microstructural features of deposited polycrystalline films that often determine the performance and reliability of microelectronic devices. Factors such as surface curvature, grain boundary curvature and surface and/or interfacial energy minimization can separately drive the evolution of structure, while processing and substrate material effects further complicate understanding of film evolution. We evaluate the competing effects of surface curvature minimization, grain boundary groove pinning, surface energy minimization and size-dependent normal grain growth during the early stages of deposited film growth. In addition the effects of substrate material properties such as crystallographic texture and surface energy on deposited film structure are evaluated. Surface roughness, columnar grain size and crystallographic texture were determined for sputter deposited pure Al films on SiO2 and Al0.5Cu films on SiO2 and Ti substrates using atomic force microscopy, transmission electron microscopy and x-ray pole figure analysis, respectively. Results for sputter deposited Al on SiO2 substrates illustrate the surface roughness decrease during film growth up to 0.3 μm thickness due to the grain size increase and optimization of Al (111) texture via combined normal and secondary grain growth mechanisms. Results for Al0.5Cu films on SiO2 below 0.1 μm thickness similarly show surface smoothing as the film achieves continuity and which persists as grain growth continues and Al (111) texture evolves. Al0.5Cu films on Ti substrates retain a double crystallographic texture and a film continuity at a film thickness below 10 nm, and maintain a smaller grain size than Al-Cu films on SiO2. The development of 5 degree offset Al (111) texture on SiO2 occurs prior to film continuity, seeding the (111) offset texture in the fully continuous film. In contrast, the 10 nm fully continuous Al films on Ti substrates are randomly oriented with exact Al (111) texture evolving due to combined normal and secondary grain growth. These results suggest that film bulk processes such as size and orientation dependent grain growth, rather than surface capillary forces, are primarily responsible for polycrystalline film surface and structure development.

10:45 AM D10.7/G7.7
OBSERVATION OF LONG-RANGE ORIENTATIONAL ORDERING IN METAL FILMS EVAPORATED AT OBLIQUE INCIDENCE ONTO GLASS. David L. Everitt, X.D. Zhu, Univ. of California-Davis, Dept of Physics, Davis, CA; William J. Miller, Univ. of California-Davis, Dept of Chemical Engineering, Davis, CA; Nicholas J. Abbott, Univ. of Wisconsin, Dept of Chemical Engineering, Madison, WI.

We studied long-range orientational ordering in polycrystalline Al films (10 nm - 30 nm) that are evaporated at oblique incidence onto a glass plate at room temperature. By measuring the averaged optical second-harmonic response from the films over a 5 mm diameter region, we observed a transition from the expected plane mirror symmetry at 10 nm to a surprising three-fold in-plane rotational symmetry at 30 nm. X-ray pole figure analysis performed on these films showed the strong <111> fiber texture typical of polycrystalline films, but with a restricted, three-fold symmetric, distribution of crystallite orientations about the fiber axis.

11:00 AM D10.8/G7.8
GRAIN BOUNDARY CURVATURE IN POLYCRYSTALLINE METALLIC THIN FILMS. Alexander H. King, Purdue University, School of Materials Engineering, West Lafayette, IN.

Annealed thin films are typically observed to have mean grain diameters that are only nominally equal to the film thickness. The standard explanation for this sheet thickness effect is that it results from a balance of grain boundary curvature in two different directions which, in turn, results from pinning at grain boundary grooves. TEM experiments have been performed to test this model, and it is found that the predicted curvature about axes in the film plane, is absent. Alternate explanations of the sheet thickness effect are considered. Acknowledgement: this work is supported by the National Science Foundation, grant number DMR 9920184.

11:15 AM D10.9/G7.9
PRECIPITATION IN SUB-MICRON Al(Cu) INTERCONNECTS DURING ELECTROEMIATION. G.A. Volkert, C. Witt and E. Artz, Max-Planck-Institut für Metallforschung, Stuttgart, GERMANY.

Studies of 6 μm precipitation during annealing and electromigration of passivated sub-micron Al(0.5Cu,0.5SiO2) interconnect segments have been performed in-situ in an SEM. By applying a sufficiently large current density, precipitates nucleated and grew at the anode ends of the segments and dissolved at the cathode ends. By reversing the direction of the current, it could be reversed. The kinetics of nucleation, growth, and dissolution were studied at 250°C for a range of current densities, as well as in the absence of an applied current. In all cases, the behavior was well described by a model in which the migration of Cu in solution is driven by both the electromigration force and the solute concentration gradient. A clear barrier to nucleation was observed, at a supercooling of roughly twice the equilibrium solubility, after which precipitation growth was diffusion rate-limited. By comparing precipitation dissolution kinetics with and without an applied current, values for the effective charge and the diffusion coefficient of Cu were determined. Since the measured Cu diffusion coefficient was several orders of magnitude larger than that in the bulk lattice, and since the interconnect segments have an almost perfect bamboo structure, it is likely that Cu diffusion occurs predominately along the interfaces. The precipitates formed at different sites at the anode ends during each current cycle, suggesting that the microstructure does not determine the nucleation site. It was also observed that precipitates dissolved without leaving voids behind, indicating that the Al moved backwards to replace the Cu either due to a stress-gradient or due to coupling between the Cu and Al fluxes. The implications of these results on the understanding of precipitation, particularly in small dimensions, will be discussed. In addition, it is hoped that results of the temperature dependence will be presented and provide further insights into the dominant mechanisms.

SESSION D11/ER. JOINT SESSION: PROCESS INTEGRATION AND MANUFACTURABILITY
Chair: Rajeek Balj
Thursday Afternoon, April 27, 2000
Goldene B2 (Marriott)
1:30 PM D11.1/ER.1

An overview is given of chemical mechanical polishing (CMP) of copper, aluminum and tungsten. Issues concerning the consumables selection, such as pads and slurries are discussed as well as their impact on process performance. Dual damascene integration and CMP issues of low-k dielectrics and Cu or Al metallization are discussed. Examples of electromigration performance of dual damascene Cu and Al are given.

2:00 PM D11.2/ER.2
TECHNIQUE OF SURFACE CONTROL WITH THE ELECTROLYZED DI WATER FOR POST CMP CLEANING. Mitsuhiro Shinkawa, Kenya Itoh, Ichiro Katshike, Masayuki Komexawa, Sachiko Kihara, Ebara Corporation, Precision Machinery Group, Kawasaki, JAPAN; Takayuki Sato, Kosai Yamada, Ebara Research Center, Center for Technology Development, Kawasaki, JAPAN; Noto Miyashita, Masaaki Kodera, Yoshitaka Misugi, Toshiba Semiconductor Company, Kawasaki, JAPAN.

Recently, CMP is used for polishing for manufacturing of devices with multilayer interconnects. Metal CMP processes have many subjects to look at because surface of wafer to be polished is composed of several materials - wiring material, interlayer dielectric,
etc. In general, wafers after CMP process are contaminated with particles and metallic impurities. In post metal CMP cleaning process, it is important that wafers are cleaned without damage to the materials. In this paper, we report the basic characteristics of the electrolyzed DI water, and its effect on the wafer surface when used for cleaning after metal CMP by analyzing the wafer surface with XPS and other instruments.

2:15 PM D11.3/E8.3
STUDIES ON SELECTIVITY TOWARDS BARRIER LAYER IN COPPER CMP. Dinesh D. Chandrasekar, Vinay Desai, Ajit Seal, Advanced Materials Processing & Analysis Center (AMPAC), University of Central Florida, Orlando, FL.

Copper CMP is used to form interconnects in multi-level device fabrication with dual-damascene architecture. Copper is typically deposited on a oxide interlevel dielectric layer with a Ta/TaN barrier layer in between. One of the critical issues in copper CMP is to minimize dishing of metal lines during CMP. Dishing of copper lines is enhanced by low CMP removal rates for tantalum compared to copper, due to widely different mechanical and electrochemical behavior of copper and tantalum. Use of a slurry, which provides similar removal rates for both copper and the barrier layer, can minimize metal dishing in CMP. In this study we will examine the factors that affect the removal rates in copper and tantalum. In this study, CMP will be carried out with both copper and tantalum under identical conditions of planarization and in-situ electronical measurements as well as X-ray Photoelectron Spectroscopy (XPS) are used to determine the removal mechanism in CMP of copper and tantalum. Based on these fundamental studies, slurry is designed to minimize the removal rates of both copper and tantalum.

3:00 PM *D11.4/E8.4
DEVELOPMENT OF A MANUFACTURABLE MULTI-LEVEL COPPER CMP process. Rajesh Shrinivas, Vinesh, Gour Samanta, Kothuri, Sanjit Joshi, Texas Instruments, Dallas, TX, and Rajeev Bajjar, Fritz Redeker, Yatin Ma, Applied Materials, Inc. - CMP Division, Santa Clara, CA.

The dual damascene approach for forming copper interconnects has enabled the simultaneous formation of sub-0.25μm vias and trenches that are etched in dielectric prior to barrier, seed and bulk Copper deposition and subsequent CMP to remove the excess material. A variety of recipe technologies for CMP of copper, with every level of the process, poses serious challenges on CMP process capability. Interim dielectric planarization is necessary to eliminate topography created during Cu CMP. This additional step adds cost and negates one of the potential advantages of dual damascene processing. There exists a need for Cu CMP process that meets the low topography requirements of multi-level damascene and meets device performance requirement for interconnect metal remaining. Process performance of high-accuracy removal rates of copper, low damage, and low voids are desired for multi-level damascene applications. Initial topography was generated through the tungsten CMP process step. Experimental results show that understanding of the relation between topography has a detrimental impact on the polish performance at the first Cu layer CMP step. Overpolish requirements, to accommodate the underlying topography, for the high and low selectivity processes are different. Final planarization achieved with both process and chemistries are required. Physical and online electrical data from the two selectivity processes will also be discussed.

3:30 PM D11.5/E8.5
REMOVAL RATE, UNIFORMITY AND DEFECTIVITY STUDIES OF CHEMICAL MECHANICAL POLISHING OF BPSG FILMS. Benjamin A. Bonner, Boris Fishkin, Jeffrey David, Chad Garrett and Tom Osterfield, Applied Materials, CMP Division, Santa Clara, CA.

Borophosphosilicate glasses (BPSG) is currently a film of choice as pre-metal dielectric. The addition of phosphorous to silicate films may lower the migration of alkali ions, while boron addition lowers the glass transition temperature of the film, allowing it to flow at lower temperatures to give better local planarity. The move toward sub-0.25 micron line width requires global planarization to achieve good interconnects. This global planarization can be achieved by chemical mechanical polishing (CMP). The current study involved CMP of 0.18μm BPSG films. The dopant concentrations in the films ranged from 3.5 to 6.5 percent. Changing the concentration of boron and phosphorus had little effect on the uniformity of post-polished wafers, but had a significant effect on the removal rate. In general the removal rate increased as the total concentration increased, with boron dopant concentration having a much stronger influence on the rate than phosphorus dopant concentration does. Information regarding the mechanism of the effects of dopant concentration on removal rate will be discussed. Defectivity was studied during the course of this project. Post-polish defect levels of BPSG films were lower than reference TEOS films, with few or no CMP microcracks. Analysis of the defects were performed using light scattering techniques and optical review.

3:45 PM D11.6/E8.6
POLISHING STUDIES ON MATERIALS RELATED TO SiO₂/TiN/TiN/W MULTILAYER STACKS. V. S. Chakrapani, K.B. Sundaram, V.H. Desai, D.C. Trumboli, S. Seal.

Multilayer interconnections involving tungsten will consist of SiO₂/TiN/TiN/W layers in the CMP process of tungsten, the polishing studies of these layers are very crucial. In this study a detailed investigation is conducted on the polishing rates of these four layers by using bulk high purity targets. The parameter studied in this investigation is the polishing rate as a function of the applied pressure, table speed and slurry used.

4:00 PM D11.7/E8.7
USING WAFFER-SCALE PATTERNS FOR CMP ANALYSIS. Balkrishna R. Bhat, Terence Geo, Duan, and Bojan Djurdjevic, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA; Jeffrey Davis, Benjamin A. Bonner, Peter McKeever, Thomas H. Osterfield, Applied Materials, Santa Clara, CA.

Wafer-scale pattern [1] in CMP have previously shown promise as a tool to study CMP dependencies. A new set of wafer-scale patterns has been designed for detailed analysis and modeling of key CMP effects. The goal of this work is to explore the development of a method that characterizes the planarization capability of a CMP process using these wafer-scale patterns, to determine the method of characterizing a pad deflection limitation that would affect the polish of particular patterns, and to explore the possible use of wafer-scale analysis to simulate the effects of nanotopography on CMP. There are two major avenues to approach for characterization of planarization performance. It is possible to determine the thickness differences of the process via analysis of the trench removal for various feature sizes. Alternatively, planarization length may also be determined by analysis of the post-CMP transition region of the trench edge, after complete trench step height removal. Analysis of the deflection limitations of a particular pad can be performed by experiment using different pads, step heights, and time splits. Post-CMP profilometry scans of the trenches will demonstrate the shape and deformation of the pad as deflection occurs. The results of this analysis will provide insight on flexing limitations of the pad. Nanotopography refers to the existing micron-scale surface variations that may be present on bare silicon wafers [2]. CMP of conformal films on such wafers can result in variation concerns in later stages of the process. Proper simulation of the effect of nanotopology on a post-CMP film can lead to analysis and diagnosis of potential problems. A methodology of using wafer-scale patterns for CMP analysis will be described. Implementation of wafer-scale patterns via traditional, as well as alternative means, will also be discussed. [1] Peter Burke, MRS 1996 [2] K.V. Ravi, Future Fab International, Issue 7, pp. 207.

4:15 PM D11.8/E8.8
NEW TECHNIQUES FOR IN-SITU CMP END-POINT METROLOGY. Mehrdad Nikoufar, Shing Lee, Guochao Zheng, Kalman Kele and Kurt Lehman, Film and Surface Technology Division, KLA-Tencor Corporation, San Jose, CA.

A new technique for in situ end point metrology in chemical mechanical polishing (CMP) is reported. This technique is based on a recently developed self-learning objective (SCO) in conjunction with multi-angle reflectometry at a single laser wavelength. The SCO sets up a small local jet of DI water in the vicinity of the wafer during CMP and it offers a number of advantages. Firstly the size and any defect in the optical path are completely removed and hence we make the in-situ measurement through DI water. Furthermore, the SCO alleviates the need for a soft window and all problems associated with it. These advantages enable us to preserve angular resolution and hence perform multi-angle reflectometry during CMP. The wafer is illuminated at 9 separate angles simultaneously and, using the multi-angle data, we solve for the film thickness, which is report dynamically during CMP. It is, therefore, clear that end-point detection is a subset of the overall end point metrology. Without the SCO the diffuse scattering in a potential soft window material together with scattering resulted from surface scratches lead to a significant cross talk and hence loss of sensitivity between adjacent channels. The basic design of the SCO is discussed and considerations for avoiding slurry dilution are presented. It is shown that this technology has zero impact on the CMP process. Typical results from copper and oxide (ILD and STI) CMP are presented and excellent agreement between the measurement and theoretical prediction is demonstrated. We stress that agreement between theory and experiment is essential so that data may be inverted to compute film thickness during polish. This strategy is fundamentally different.
from empirical end point detection this is the present-day approach in techniques that use a single beam at single wavelength through a soft window. Finally advantages of multi-angle over multi-wavelength for data inversion are presented.

4:30 P.M. D11.0/E8.0

PLANARIZATION OF COPPER DAMASCENE INTERCONNECTS BY SPIN-ETCH PROCESS: A CHEMICAL APPROACH
Shyam P. Mukherjee and Joseph A. Levert, Allied Signal Electronic Materials, Sunnyvale, CA; Donald S. DeBear, SEZ America Inc, Phoenix, AZ.

During the metallization of dual damascene structures, excess copper is electrodeposited on field areas in order to achieve a complete filling of vias and trenches. The removal of excess copper and planarization of the surface is typically achieved by chemical-mechanical polishing (CMP), where mechanical force in the form of downward pad pressures and chemical effects in the form of a dispersion of ceramic particles are utilized. In this work, we present a chemical planarization approach, Spin-Etch Planarization (SEP) to accomplish the dual tasks of planarization and excess material removal. The present approach is based on the controlled wet chemical etching and polishing of the copper layer. The chemical etching solution, having no ceramic particles is dispensed onto the wafer's surface while it is spinning. The physico-chemical nature of the etchant and processing conditions such as the spin-speed of the wafer and dispense pattern of the etchant are selected to simultaneously achieve uniform removal of copper and planarization of local recesses of the different feature sizes in the plated copper surface over the entire 200mm wafer. This process is based on controlled wet-chemical etching, which involves a higher metal dissolution-rate at surface projections, and on peak areas and a lower metal dissolution-rate in crevices or in recesses. This technique leads to a leveling of the undeveloped surface features. Once planarization of the surface topography by the uniform and selective removal of copper is achieved, a different etchant is used for the selective removal of the barrier layer(s). At this step, the exposed planarized copper features are kept passivated while the removal of barrier layer is achieved. In this work, we will present the basic concepts and process principles of SEP and the results of planarization obtained with 200 mm electroplated patterned copper wafers. We will also describe the key features of the SEZ Spin-Etch system that contributes to process performance and manufacturability.