SYMPOSIUM FF
Interfaces, Adhesion, and Processing in Polymer Systems

April 24 – 27, 2000

Chairs

Spiros H. Anastasiadis
Inst of Electronic Structure and Laser
Foundation for Res & Tech-Hellas
PO Box 1527
Crete, 711 10 GREECE
30-81-391466

Alamgir Karim
Polymers Division
NIST
MS 8542
Gaithersburg, MD 20899
301-975-6588

Gregory S. Ferguson
Dept of Chemistry
Lehigh Univ
693 Seeley G Mudd Bldg 6
Bethlehem, PA 18015-3172
610-758-3462

———

Symposium Support
National Science Foundation

Proceedings published as Volume 629
of the Materials Research Society
Symposium Proceedings Series.
SESSION FF1: THIN FILMS
Chair: Spiro H. Anastasiadis and Stahl K. Satija
Monday Morning, April 24, 2000
Metropolitan I (Argent)

8:30 AM *FF1.1
PHASE SEPARATION AND INTER-DIFFUSION OF THIN POLYMER BLENDS FILMS. Charles C. Han, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD.

One of the challenges in the science and technology of polymers today is in the area of surface/interface. This is especially true when multi-component polymers (polymer blends) are used. Not only does it have to consider inter-polymer interactions, but also the polymer surface interaction. Things may become more complicated, when the thickness of the film becomes comparable to the thermal fluctuation lengths or to the chain dimensions. In this talk, the thickness dependence of the phase separation mechanism of polystyrene/polybutadiene and deuterated polybutadiene-polyisoprene films will be presented. It will be shown that the phase separation of films on the surface can change from bulk-like behavior to surface wave directed layer structure and finally to lateral phase separated structure as thickness decrease. With the combination of reflectivity, AFM, and optical microscopy techniques, the preferential surface enrichments by low surface energy component, the surface roughening after phase separation will also be discussed. With the use of multi-layer Langmuir-Blodgett coated monolayer cinnamate (IPCC) films as barrier membranes, inter-diffusion of polystyrenes with different molecular weights has also been studied. The selectivity of ultra thin IPCC membrane will be discussed.

9:00 AM *FF1.2
PATTERN FORMATION IN THIN POLYMER FILMS: A NEW MICROPHOTOGRAPHY. Jean-Loeup Mission, Peter F. Green, Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX.

Researchers have shown that thin, non-wetting, liquid homopolymer films dewet substrates, forming patterns that reflect fluctuations in the local film thickness. These patterns have been shown to be either discrete cylindrical holes throughout the surface of the film or bicontinuous “spinodal-like” patterns. In this presentation we show the existence of a new morphology. We show that a random copolymer, styrene-acrylonitrile (SAN) of thickness h=12nm, dewets silicon substrates forming what we call an intermediate morphology. During the early stage of dewetting, discrete non-cylindrical, irregular, shaped holes appear spontaneously in the film. The number of holes, N, initially increase with time and the morphology of the late stage of growth, after 18 days, is characterized by a bicontinuous pattern, distinct from conventional spinoidal dewetting patterns. The structural evolution of this intermediate morphology is discussed.

9:15 AM *FF1.3
WHAT DETERMINES THE ROUGHNESS OF SOLVENT CAST FILMS? Ken Strawhecker, Sunil Kumar, Pennsylvania State University, University Park, PA; Alangur Karim, NIST, Polymers Division, Gaithersburg, MD.

Solvent casting of polymers is routinely used in microscopic packaging, and generically in coating applications to prepare films of controlled thickness and roughness. While roughness critically determines properties such as “gloss” [specular reflectivity of light], and surface friction, little is understood of the factors which control it. Here we show that, in the case of good solvents, rough films are created when rapidly evaporating solvents are employed, due to evaporation driven Marangoni instabilities, coupled to the fact that the films have insufficient time to level. Smooth films can always be created by minimizing the solvent evaporation rate. E. The critical role of solution leveling is emphasized by performing contact angle measurements for these solutions. While complete wetting is expected, the spreading time for solutions in volatile solvents is longer than the solvent evaporation time. These solutions do not spread completely, and yield large advancing contact angles. Our measurements stress the importance of leveling in controlling film roughness, and further show that contact angle experiments are a valuable tool to design operating conditions to obtain films of desired “gloss”.

10:15 AM *FF1.4
THE ROLE OF POLYMER SURFACE INTERACTIONS IN THE SELECTIVE ADSORPTION OF POLYMER THIN FILMS. Xueping Jiang, Sarah L. Clark and Paula E. Hammond, Massachusetts Institute of Technology, Dept. of Chemical Engineering, Cambridge, MA.

By controlling the relative amount of adsorption of polyelectrolyte multilayer films on regions with a given chemical surface group, patterned polyelectrolyte films have been achieved. In this talk, the underlying electrostatic, hydrophobic, and hydrogen bonding interactions involved in selective adsorption of polyelectrolytes is explored. By comparing adsorption of polyelectrolytes from aqueous solution onto different charged and uncharged surface group including acid, sulfonate, methyl and alkylene glycol functionalized surfaces, we can obtain a measure of the relative importance of these interactions with varying ionic strength and pH. Growing angle FTIR and AFM studies have been used to gain a better understanding of these interactions, particularly on acid and alkylene glycol functional surfaces. It is thought that the molecular architecture of the polyelectrolyte backbone, as well as the degree of hydration of polyelectrolyte glycol groups on the surface, determine the preferred area of adsorption for polyelectrolymes, whereas hydrogen bonding plays a greater role in the preferred adsorption site for polynucleic acids. These interactions may be tuned to create interesting composite film structures on patterned surfaces.

10:45 AM FF1.5
INSTABILITIES IN BLOCK COPOLYMER THIN FILMS ABOVE THE BULK ODT. Peter F. Green, and Rhoda Lumley, Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX.

We show that this symmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymer films at temperatures higher than the bulk order-disorder transition temperature (ODT) of the copolymer dewet silicon substrates, forming topographical features that are large on the initial film thickness h. Films of thickness h=15.5 nm dewet the substrate, forming bicontinuous spinodal-like patterns. When 3.5 nm < h < 7.2 nm, discrete holes are observed randomly throughout the surface of the film. For films of thickness in the range h=5L < 5L = 35 nm, the copolymer exhibited anatrophic behavior whereby the top layer of thickness [h - L] dewets a dense “bead” of ordered copolymer of height L nucleated to the silicon substrate. A bicontinuous spinodal pattern is observed for films of thickness in the range h < 3L < 5L. Discrete holes are observed for films where 15 nm < h < 5L. The structure of the top layer eventually evolves into droplets. For h > 5L nm the film is stable. The time dependent evolution of the structures in the anatrophic regime is discussed.

11:00 AM FF1.6
ENVIRONMENTAL CONTROL PULSED FORCE MODE ATOMIC FORCE MICROSCOPY OF PATTERNED SELF-ASSEMBLED MONOLAYERS AND POLYMER BLENDS. Donna Gray, University of Minnesota, Department of Chemistry, Greg D. Hunsag, University of Minnesota, Characterization Facility; Wayne L. Gladfelter, University of Minnesota, Department of Chemistry, Minneapolis, MN.

Recent developments in atomic force microscopy (AFM) allow the mapping of topography, stiffness and adhesion via Pulsed Force Mode (PFM) operation. This study incorporates the PFM capability by performing an array of force-distance curves at frequencies ranging from Hz to kHz speed, with data acquisition at MHz time-resolution. In addition, scanning speeds are comparable to typical contact mode operation, and our software development has allowed efficient processing of large amounts of data. We are developing such PFM methodologies that incorporate environmental control, tip functionalization, and fluid media variation, such that specific tip-media interactions in various media can be studied and the obtained data used to elucidate the effects of chemical functionality. Polymer blends are then studied to distinguish the effects of differing mechanical properties.

11:15 AM FF1.7
TACTICITY AND SURFACE CHEMISTRY EFFECTS ON THE GLASS TRANSITION TEMPERATURE OF THIN SUPPORTED PMMA FILMS. Yves Groen, Loic Hamon, Pascal Carriere, Yves Hall, Institut de Chimie des Surfaces et Interfaces, Mulhouse, FRANCE.

The understanding of the properties of polymers near the surface of an inorganic material is of practical importance in many applications such as coatings, adhesives or composites. Tg studies in confined geometry have highlighted a significant modification of the mobility of polymer in thin films as compared to the bulk. In this paper the Tg of thin layers of polymeric systems including stercoregular PMMA and blends has been studied by spectroscopic...
ellipsometry. The influence of the surface treatment of the silicon wafer on the Tg of the thin film has also been addressed.

Stereoregular PMMA of great interest for understanding of the dynamic of confined polymers because of their well-known tacticity dependent bulk Tg associated with a local chemical composition. From our ellipsometric experiments, it turns out that iPMMA increases its Tg above the bulk value for films thickness b < 60 nm whereas syndiotactic isomer exhibit a Tg depression for thin layers on silicon wafers covered by native oxide. The observed effects on the Tg of the thin layers are enhanced on highly hydroxylated SiO2/Si surfaces. Thickness and tacticity dependence of the Tg are, therefore, required to modify significantly the Tg of the tactic PMMA in thin film geometry.

Stereospecific adsorption of the isotactic PMMA sequences has been shown to occur on Si-Si terminated silicon. This segregation of the isotactic segments may lead to a particular interfacial organisation of the chains. Stereoregular PMMA of different tacticity packing at the interface can be envisaged to explain the increase of the thin layer Tg for predominantly isotactic PMMA. s-PMMA chains are more loosely packed at the interface which is likely to increase the free volume for this isomer in the vicinity of the surface and then depressed the Tg.

11:30 AM Ff1.8
STUDIES OF POLYSTYRENE INTERFACES BY VIBRATIOLY-
ALLY-RESONANT SUM-FREQUENCY GENERATION
L.J. Rieth, K.A. Briggsman, J.C. Stephenson and W.E. Wallace, National Institute of Standards and Technology, Gaithersburg, MD.

Vibrational-resonant sum-frequency generation (VRSFG) is emerging as a powerful probe of the molecular structure of interfaces. VRSFG is a nonlinear vibrational spectroscopy in which an IR, visible, or near infrared photon, resonant with the system of study, is mixed with a visible photon to produce a new photon at the sum frequency. It is uniquely interface specific as the mixing is symmetry forbidden in centrosymmetric media. Remarkably, there have been few studies in which the technique was applied to the characterization of polymer surfaces and interfaces. We report VRSFG studies of thin polystyrene films on Au and Si substrates. Surface contamination is routinely encountered, but reproducible spectra characteristic of the PS can be obtained from ethanol rinsed samples. Quantitative modeling of VRSFG spectra acquired for various film thicknesses allows determination of the signal from the buried and free interfaces. The orientational distribution of the phenyl rings at the free interface is found to vary dramatically between annealed, spin-coated films of low (4 k u) and moderate (800 k u) molecular mass. Quantitative analysis of the orientational distribution and comparison with existing NEXAFS studies of ring alignment will be presented.

11:45 AM Ff1.9
ULTRATHIN SOLID FILMS VIA TOPOLOGICAL PHOTO-
POLYMERIZATION: Jinhao Wu, IBM Almaden Research Center, San Jose, CA, and Sansotec Technology, RMO, Fremont, CA.

Molecular design and nanomaterials engineering of polymers in form of thin films are benefiting from the challenge of ever-decreasing size for miniaturization with molecular dimension, as protective coating, lubrication and functional components. The physics and chemistry underlying them has been the focus of research for many years, and two fundamental questions concerning thin films materials how to prepare them and how to make them adhere onto substrates. A respectable arsenal of techniques has been invented to produce desired thin films of which the thickness can be regulated to atomic and molecular level. The adhesion between two components is still under intensive investigation. Cyanate esters are established high temperature, thermosetting polymers and have found a wide spectrum of applications in electronics and aerospace industries. Interested in potential range in disk drives, we have successfully prepared polycyanate thin films, starting from selected reactive monomers of cyanate esters. This work focuses on the polymerization mechanism and morphology of the monomer bisphenol-A dianhydride (2,2'-dihydroxydiphenyl oxide) (BADC). The monomer is vapor deposited onto silicon wafers, the thickness of which can be controlled to a submolecular layer. The monomer film is then irradiated with ultraviolet light to convert the deposited monomer to form a solid, robust overlayer. The cyanate film adheres fast to the substrate surface and could not be removed or dissolved by rinsing with methyl ethyl ketone or other solvents capable of dissolving the BADC monomer. The cured films is thermally stable and could tolerate at least 10 min of boiling without showing any decrease in thickness, while the monomer film would quickly evaporate at this temperature. FTIR spectra show that ~2500 cm⁻¹ doublet vibrational modes from the functional groups of CN triple bonds in the monomer and new broad bands of peaks emerge in the range of 1800-900 cm⁻¹ in the resultant polymer film. XPS spectra witness a high shifting of bonding energies of the elements C, N, O. The data of NMR and TMS suggest that the photopolymerization of the monomer initiated by ultraviolet light forms the cyanurate ring within the film, which is energetically stable, five-member ring, an isocyanurate product. Atomic force microscopy (AFM) is used to monitor the changes in topography of the wafer surfaces with the addition of the polycyanate overlayer.

SESSION Ff2: POLYMER-POLYMER AND
POLYMER-WALL INTERFACES
Chairs: Jacob Klein and Paula T. Hammond
Monday afternoon, April 24, 2000
Metropolitan I (Argent)

1:30 PM Ff2.1
SLIP AT MOITEN POLYMER-POLYMER INTERFACES: Rui Zhao, Christopher Macosko, University of Minnesota, Minneapolis, MN.

Using layer multiplication dies in coextrusion, two or more polymers can be alternatively combined into hundreds or even thousands of continuous layers. One of the unique features in the layer multiplication process is the layer morphology of the interfacial area generated in such a way that the effect of rheology and interfacial properties is eliminated up to the point of layer breakup. This provides a model system to study interfacial phenomena in immiscible blending. A number of researchers have reported on the lowering of viscosity in immiscible polymer blends. Interfacial slip due to lack of entanglements has been proposed to explain these observations. Because of the complex morphology development in melt blends and the lack of control, the data obtained cannot be used to justify the existence of interfacial slip. With the coextruded multilayers, we are able to test the interfacial slip. PP/PS with closely matched viscosity from shear rate 0.01 to 500 s⁻¹ were used in this study. The steady shear and dynamic shear viscosity of the blends was first measured in a capillary rheometer or a rotational shear rheometer using parallel plate geometry. While the steady shear viscosity of the blends was lower than that of both homopolymers, the dynamic shear viscosity of the blends was the same as that of the homopolymers within the instrumental error. The pressure drop of the coextruded multilayer melts through a slit die was measured. The data showed that the pressure drop of multilayer melts was lower than that of both homopolymers and decreased with an increase in the number of layers, which indicates interfacial slip. The steady shear viscosity of the multilayer sample was also measured in a rotational shear rheometer using parallel plate geometry. The viscosity of the multilayers was shown to be lower than both of the components when the stress was higher than a critical value, which also confirmed interfacial slip. However the dynamic viscosity measurement did not show any interfacial slip, and the linear viscoelasticity of the melt blends and multilayers can be well described by the Palierne model. This is not predicted in de Gennes and Fredrickson's theory of interfacial slip. The experiment also showed that diblock copolymer was able to suppress interfacial slip. More work needs to be done to understand the mechanism of block copolymer suppressing interfacial slip.

References:

2:00 PM Ff2.2
REACTION KINETICS OF END-FUNCTIONALIZED CHAINS AT A POLYSTYRENE/POLY(METHYL METHACRYLATE) INTERFACE: Jonathan S. Schale, Timothy P. Lodge* and Christopher W. Macosko, Department of Chemistry* and Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN.

Polymer blending often relies on reactive compatibilization to create stable mixtures of two otherwise immiscible polymers. In reactive compatibilization, a fraction of polymer chains in each phase is functionalized. During blending, these functionalized chains react at the polymer/polymer interface to form block or graft copolymers that stabilize the mixture. Several factors may affect the rate of reaction during compatibilization: external convection during mixing that creates interfacial area, diffusion of the reactive polymer chains through the bulk to the interface, and the chemical reaction that
occurs between different functional groups. Forward recoil spectrometry (FRS) has been used to monitor the extent of reaction between maleimide-functionalized PMMA interface in the absence of external convection. Bilayer samples comprising a high molecular weight polystyrene layer containing amino-terminal deuterated polystyrene (dPS-NH$_2$) on an anhydride-terminal poly[maleic anhydride] (PMAA) layer were annealed for various periods. Significant reaction with the PMAA-anhydride interface, observed by three molecular weights of dPS-NH$_2$. The measured growth of the interfacial excess with time for all three molecules was consistent with the well-known reaction. The composition profiles were described by a diffusion-controlled interfacial reaction. Furthermore, a novel trilayer sample geometry showed that the reactive dPS chains can diffuse throughout the P5 matrix and sample the P5/PMAA interface several times before a significant amount of reaction occurs. The results of this study are consistent with other experimental systems where in situ copolymer formation is limited by reaction rate, rather than the diffusion of reactive chains through the bulk.

2:15 PM **FP2.3**

NMR STUDIES OF DYNAMICS OF PERFLUOROPOLyETHER THIN FILMS ON AMORPHOUS CARBON SUBSTRATES: CONFINED FLUIDS AND INFORMATION STORAGE.

Charles G. Wade, Gyunggook Cho, Mark Sherwood, Bing Yen, IBM Almaden Research Center, Science and Technology Function, San Jose, CA, Chris Klag, Yoojin Kim, Stanford University, Dept. of Chemical Engineering, Stanford University, Stanford, CA.

19F and 13C NMR spectra and relaxation studies have been used to study the dynamics and microstructure of perfluoropolymers (PFPEs) on amorphous carbon/hydrogen films. These systems are important in magnetic disk drives because the PFPE serves as a lubricant on the disk carbon coating in the head disk interface. In these experiments, the PFPE is adsorbed and controlled, and the measurements extend into the sub-monolayer region, where the PFPE is a confined fluid. 19F spin-lattice (T1) relaxation as a function of temperature and surface coverage shows little change between liquid and surface confined phases, indicating that the backbone motion undergoes little change between these phases. This is a very unusual result given the large thermodynamic changes measured for such changes. Spin-spin relaxation (T2), however, changes significantly between the bulk and surface samples. Spectral editing of the carbon NMR in the carbon/hydrogen amorphous overcoat allows identification of the carbon/hydrogen moieties in the system. NMR findings are compared with detailed surface energy measurements in identical systems of confined PFPE fluids.

2:30 PM **FP2.4**

TIME-RESOLVED OBSERVATIONS OF FAILURE OF POLYMER-GLASS INTERFACES IN HUMID ENVIRONMENTS.

Tom Dickinson, Stuart Irwin and Steve Langford, Washington State University, Dept. of Physics, Pullman, WA.

Adhesive interfaces play a critical role in microelectronic packaging, as well as in aerospace, automotive, and civil structures. The accelerated failures observed in adhesion strength tests due to the presence of considerable interest. By study of very small bonded zones (between mm and nm size scales) one greatly enhances the influence of environmental attack, allowing for accelerated testing. To measure failure kinetics, we have imaged various materials using high-speed video microscopy. Failure of bonded zone of a thin layer of adhesive between two glass plates placed between two glass substrates. The time required to produce a noticeable crack tip in the absence of water at the crack tip.

4:00 PM **FP2.7**

ON THE INTERFACE BETWEEN HARD CHAIN FLUIDS AND A HARD PLANAR WALL.

Frank van Swol, Sandia National Laboratories, Catalysis and Porous Materials Dept. and The University of New Mexico, Department of Chemical and Nuclear Engineering, Albuquerque, NM.

We present the first data for the interfacial properties of the simplest possible fluid substrate interface, namely that of a hard chain fluid against a planar hard wall. We use molecular simulation to calculate the surface free energy and the adsorption isotherms for hard chains of 8, 20, 100, 400 and 1000 beads. The results are compared to those of the hard sphere fluid. We find that chain fluids differ markedly from the simple sphere in that both the adsorption and the surface free energy change sign and display an extremum as a function of density. The surface free energy exhibits a Boyle density where at a nonzero density the surface free energy is equal to that of an ideal gas. The data that we present here are the first of its kind for polymer fluids and should prove particularly useful in further developing approximate density functional and integral equation approaches to polymer interfaces. To facilitate the future comparisons between exact simulation data and theoretical predictions we suggest that comparisons are made for surface tensions as functions of the pressure as derived from the contact value. We observe that the density of the pressure range is linear with pressure. Finally, for very low density chain fluids (i.e. below the semidilute regime) we analyze the density profile in terms of a profile of universal shape, following recent suggestions based on the scaling behavior of the melt.
of functionalized chains, non-functionalized polymers and two infinite, planar surfaces, which model clay sheets. The functionalized chains contain end-groups which are highly attractive in the surface vicinity. We calculate the free energy of polymers confined between the two sheets as a function of the surface separation for a wide set of parameters: the end-group adsorption energy, length of the functionalized and non-functionalized chains, volume fraction of end-functionalized chains in the bulk, and the interaction energy between the different chains. For chains between the surfaces, we also analyze the distribution of the different chain conformations; namely, we determine the dependence of the ratio of bulk and free chains within this gap. Finally, we isolate conditions for the formation of "exfoliated", "intercalated" and immiscible polymer/clay mixtures.

4:30 PM FF2.9
ELASTICITY MEASUREMENTS OF SWOLLEN CROSSLINKED MICROSPHERES ATTACHED TO WALLS USING OPTICAL MICROSCOPY
Dennis E. Dworzak, Qiaguang Zhao, and Ziqiu Qiu.
Tubitak Marmara Research Center, Kocaeli, TURKEY; M. Naci Inci, Alpay Tarkalp and Burak Erman, Faculty of Engineering and Natural Sciences, Sabanci University, Orhangazi, 41470, TURKEY.

The elastic properties of crosslinked swollen polycyclobutylene polymers were determined in various solvents via optical microscopy. Model polymer compounds were prepared as uniform microspheres using the suspension polymerization technique. By this technique, a toluene solution of butyl rubber and sulfur monochloride as the crosslinking agent was suspended in an aqueous phase and crosslinked therein to give polymers in the form of beds of uniform sizes. Typically, a polymer sphere was attached to a glass surface. A stainless steel castellate beam was pressed on the sphere through which forces transmitted to the sphere and the corresponding displacements were determined. Changes in deflection of the beam and distortion of the sphere were measured simultaneously under the microscope, as the swollen sphere was squeezed incrementally between the walls. The elasticity was then determined as a function of the observed deformation of the sphere, versus deflection of the castellate beam. The forces transmitted through the beam were measurable within an accuracy of ± 10^-8 Newtons. Differences in the elastic behavior of microspheres attached to rigid walls and large swollen elastic bodies were investigated by using the molecular theories of rubber elasticity.

4:45 PM FF2.10
NEUTRON REFLECTIVITY MEASUREMENTS OF POLYMER INTERDIFFUSION NEAR THE POLYMER/SOLID INTERFACE.
National Institute of Standards and Technology, Gaithersburg, MD; Dept. Materials Science and Engineering, Univ. of Delaware, Newark, DE.

Polymer chain mobility near a solid surface is measured using neutron reflectometry by monitoring the rate of interdiffusion between bilayers of deuterated poly(methyl methacrylate) (d-PMMA) and hydrogenated PMMA supported on polished silicon wafers. Neutron reflectometry is a powerful and non-destructive measurement of interfacial structures because of its high resolution and the opportunity to selectively label organic molecules with deuterium. Interdiffusion of segments over distances < 1.5 nm is measured at varying distances from the substrate surface. From a series of samples, an estimate of the effective distance an attractive solid substrate perturbs polymer diffusion from bulk values is determined and correlated with chain conformations calculated using self-consistent field theory. The effect of varying polymer surface interaction energies is determined by using self-assembled monolayers to modify the native oxide silicon surface. The effect of different molecular weights between the surface layer and the matrix polymer is also explored.

SESSION FF3: POLYMER INTERFACE AND ITS EFFECT ON PROCESSING
Chairs: Christopher W. Macosko and Jeffrey T. Koberstein
Tuesday, May Morning, April 24, 2000
Metropolitan I (Argent)

8:30 AM *FF3.1
NEUTRON REFLECTIVITY FROM GRAFTED POLYMER BRUSHES UNDER SHEAR.
Sudipta K. Sengupta, Robert Ilevok, Paul Butler, NIST Center for Neutron Research, Gaithersburg, MD; I.J. Peters, Exxon Research and Engineering, Annandale, NJ.

We report recent results of neutron reflectivity studies of chemically end-grafted polystyrene brushes subjected to very high shear stress flow. These brushes were studied with both toluene and cyclohexane as solvents. We have subjected the brushes to shear rates as high as 130,000/8, which is nearly 15 times higher than the shear rates reported previously. However, even at these very high shear rates we do not observe any brush thinning or thickening. In fact, the neutron reflectivity profiles at 0/8 min after application of the surface shear had changed less than 23% change in the density profile. At these shear rates we do not observe any desorption of the chemically grafted brush in contrast to previously reported work where the brushes have a tendency to desorb at shear rates beyond ~10,000/8.

9:00 AM FF3.2
FRICTION OF POLYMER MELTS ON MODIFIED SOLID SURFACES. Hubert Herrert, V. Koutso, T. Chariot, L. Leger.
Laboratoire de Physique de la Matiere Condensee, Collège de France, Paris, FRANCE.

Slip and friction of polymer melts flowing on solid surfaces covered with irreversibly adsorbed polymer chains have been studied. The material under study is a mixture of a random copolymer melt of styrene-butadiene (SBR, molecular weight from 5k to 135k, Mn = 1.2) with 5% by weight of the same polymer labeled with a fluorescent probe (NBD). Such a labeling enables to determine the surface and bulk velocities of the melt. The stress applied on the solid surface is simultaneously measured. In all experiments the attached surface chains are well controlled. In all force - displacement curves there is a transient followed by different stationary friction regimes depending on the applied shear rate: 1) at low shear a linear friction regime with low slip; 2) at intermediate shear rate a stick-slip regime appears, reminiscent of the intermediate regime observed in polydimethylsiloxane (PDMS) [1,3] at higher shear rates there is a transition to a low friction regime with high slip. Such a behaviour is typical of a strong coupling between the surface chains and the bulk ones through entanglements: when the shear rate increases the surface chains deform under the friction and finally desintegrate from the bulk to induce high slip. Results on the variation of the onset of the stick-slip and the high slip regime with the density of adsorbed chains and the molecular weight of the bulk and surface chains will be presented. Differences in repetition times could explain the changes observed between PDMS and SBR in the intermediate regime.

9:15 AM *FF3.3
EFFET OF BORON NITRIDE IN THE PROCESSING OF METALLOECENE POLYOLEFIN.
S. Hauck, D. Pennisi, Dept. of Chemical Engineering, The University of British Columbia, Vancouver, BC, CANADA.

The influence of a new processing additive (a composition of fine particles of Boron Nitride) on the rheology and processing behavior of polyolefins in extrusion is studied. It is shown that the use of a small amount of Boron Nitrate, typically 0.1-1.0% ppm, not only eliminates surface melt fracture but also postpones the onset of melt fracture to significantly higher shear rate values depending on resin and boron nitrate type, temperature, and the additive content. To identify a possible mechanism for this unique effect on the processability of the resins, rheological measurements by means of parallel-plate, sliding-plate and extensional rheometers were carried out. A visualizing technique was also used to visualize the development of flow patterns at the entrance of a transparent die made out of fused quartz, with and without the presence of the Boron Nitrate.

10:15 AM *FF3.4
ADHESION, SHEAR AND INTERFACIAL SLIP OF POLYMERS ON SOLID SURFACES. V. Klein, E. Kussurishev, Y. Fathin, T. Tzagour, Dept. of Materials and Interfaces, Weizmann Institute of Science, Rehovot, ISRAEL; present address: Dept. of Chemistry, Toronto University, CANADA.

Polymers adhered to surfaces that experience a shear field may either stretch, slide along, or detach from the surface (or a combination of these), situation which can occur in flow from processing to lubrication. Using a surface force balance, we have examined the way in which solvated polyurethane chains end-attached to a solid substrate respond to progressively increasing shear forces applied by compressing and sliding past them a similar polymer-covered surface. Our results suggest that beyond a certain shear stress the polymer chains can detach from and slide along the surfaces. For long chains we find plug-like flow to occur between the sliding surfaces, while for short chains, this detachment and compression lead to expulsion of chains from between the gap, illustrating qualitatively why the chain detachment under stress. Our results may be understood in terms of a simple model where the shear stress overcomes the adhesion energy of the chain ends to the surface.
10:45 AM FF3.5 SHEAR-INDUCED COALESCEIN OF ADSORBED POLYMERS IN A GOOD SOLVENT: Uri Risvi, Rafael Tabach, Jacob Klein, The Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, ISRAEL.

Direct measurements of the shear and normal forces between two atomically smooth mic surfaces immersed in dilute solution of poly(ethylene oxide) [PEO] in toluene have been carried out as a function of surface separation. Toluen is a good solvent for PEO and two different weights were used: 11.0 and 11.2. Poly(ethylene) adsorption of the PEO force-distance law was indicated with repulsion beginning at a distance of \(-3 \pm 1\) Rg (where Rg is the unperturbed gyration radius) at shorter separation. In this study, a uniform gap and back shear motion was applied in series of separations. Shear response commenced at a distance of \(2 \pm 0.4\) Rg and increased monotonically at shorter distances. In the lower molecular weight case, normal force measurements taken after shear showed no forces up to a separation of 5nm, below which stronger attraction was indicated. This suggests that sliding of the two surfaces past each other under the force of 37 kPa of the mic surfaces. Using analysis based on the implications of the scaling theory of adsorption we have estimated that about 10% of the polymers are still left on the surface and the attraction between the surfaces is due to bridging effect, which is known to take place at low surface coverage. In the higher molecular weight, shear forces increased monotonically for 1.3<Rg<1.8 Rg. At shorter separations the shear forces increased very little with increasing the normal load. Normal forces taken after shear were similar to those before shear. This suggests that even though the shear treatment did not remove the polymer, the polymer repelled away, thus reattaching to the surface because the longer chains are heavily entangled and did not diffuse out of the gap. As the polymers remained within the gap they behaved as a good lubricant.

11:00 AM FF3.6 MOLECULAR-DRAUGHT STRAIN COUPLING IN BRANCHED POLYMER MILTS: Richard Blackwell, Tom McLeish and Oliver Harlen, Department of Applied Mathematics and Interdisciplinary Research Centre in Polymer Science and Technology, University of Leeds, Leeds, UNITED KINGDOM.

The "pom-pom" model of McLeish and Larson (J. Rheol. 42 (1): 81-110, 1998) provides a simple molecular theory for the nonlinear rheology of long chain branched polymer melts. The Edwards-de Gennes tube concept is used to derive a constitutive equation for a simple branched molecule composed of two star polymers linked by a single backbone chain. A feature of this model is that the backbone section of tube can stretch up to maximum length given by the maximum entropic drag force from the arms, after which the star arms are withdrawn into the backbone tube. This produces a sharp transition in the extensional viscosity at this maximum stretch. This unphysical feature results from an over-simplification of the behaviour near the branch points. In this paper we introduce a simple treatment of the coupling between related and unrelated polymer segments at branch points. This allows for localised displacements of branch point within a quadratic potential before maximum extension is reached. The treatment removes any length from the maximum outside the tube and reduces the drag on the star arms. This smooths out the sharp transitions in extensional viscosity in the original "pom-pom" model at the cost of introducing an extra unknown parameter. This modification improves the prediction of the nonlinear rheology of H polymers whose molecular structure is known. Alternatively, for polymers of unknown structure such as commercial Low Density Polyethylene, the model parameters may be fitted from linear viscoelastic and uniaxial extension data, to provide predictions for the behaviour in transient nonlinear shear and planar extension. By including local branch point displacement we find improved agreement with the data for Low-Density Polyethylene.

11:15 AM FF3.7 SHEAR-INDUCED DROPLET COALESCEIN IN IMMISCIBLE POLYMER BLENDS AND THE EFFECT OF INTERFACIAL MODIFICATION: S. D. Haffen, A. M. Jameson, J. Minus-Zinower, B.E. Burkhart, G.V. Pfahler, Case Western Reserve Univ, Cleveland, OH.

Experimental data on the rate of shear-induced coalescence in binary and immiscible immiscible polymer blends is interpreted in the context of current analytical models. Coalescence consists of three steps: first droplet collision, then drainage of the matrix film between the droplets, and finally coalescence. Analysis of the experiments reveals that coalescence efficiency yields an independent measure for the probability of each step. Chester's film drainage theory [1] has been verified. For sufficiently weak capillary number, the probability of film drainage is unity and coalescence is limited by the efficiency of the other two processes. Block copolymer additives that adsorb to the interface may influence the efficiency of each step leading to coalescence. The effect of poly(ethylene oxide)-b-propylene oxide-ethylene oxide copolymers on the coalescence efficiency in blends of poly(propylene oxide) and poly(ethylene oxide) was investigated. The solubility and the degree of interfacial adsorption of the copolymer were adjusted by means of temperature and its molecular weight. In each case, the copolymer was sufficiently soluble that the equilibrium amount of adsorbed species was established rapidly and only weak interfacial tension gradients could be generated. Therefore, under these circumstances, the collision efficiency is reduced only slightly, and the primary effect of the block copolymer was to inhibit drainage. Modifications of Chester's coalescence efficiency theory [2] to account for copolymer solubility, and of Chester's theory [1] to incorporate the presence of copolymer have been developed and tested.

The authors gratefully acknowledge the financial support of the Goodyear Tires and Rubber Co., GE plastics, and NSF grant CTS-9721562.

11:50 AM FF3.8 SCALING BEHAVIOR OF POLYMER BRUSHES: Jürgen Büche, Markus Biesalski, Martin Schimmel, University of Freiburg, Institute for Microsystem Technology (IMTEK), Freiburg, GERMANY; Diethelm Johannsmann, MacPhadeh-Institute for Polymer Research, Mainz, GERMANY.

Both from a theoretical and from an experimental point of view much attention has been directed towards systems where macromolecule-cues are terminally attached to a solid substrate. Several such systems were developed in the past, mostly in order to engineer the way the polymers are reacted with appropriate surface sites (grafting to technique). To avoid some problems associated with this technique, we have generated the polymer brushes directly on the surfaces of the substrates by using self-assembled monolayers of initiator and polymerization in situ (grafting from). Following this grafting from approach polymer monolayers having a precisely controlled film thickness in the range between 2 and 1500nm can be synthesized. By adjusting the chemical composition of the attached polymer, surfaces with tailor-made properties can be prepared. The swelling of neutral and charged polymer brushes in contact with solvent is studied by Total Internal Reflection Ellipsometry. The scaling behavior of neutral and polyelectrolyte brushes attached to solid surface will be described.

SESSION FF4/DD4: JOINT SESSION: POLYELECTROLYTES AND PROTEINS AT SURFACES
Chair: Almagir Karim
Tuesday Afternoon, April 25, 2000
Metropolitan I (Argent)

1:30 PM FF4.1/DD4.4 GRAFTED POLY(ACRYLIC ACID) BRUSHES FOR CELL-SURFACE INTERACTIONS: Jens Hildorn, B. Gupta, L. Garwanesig, A. Laurent, Polymer Lab, Dept. Materials Science, Swiss Federal Inst Techn, Lausanne, SWITZERLAND; I. Basson, P. Frey, Polymer Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, SWITZERLAND; J. Hedrick, IBM ARC, San Jose, CA.

Adhesion, proliferation, differentiation and migration of cells in their native environment are critically dependent on their interaction with the surrounding extracellular matrix (ECM). Therefore, in order to promote biointeraction, cells must "believe" they are "at home". In the future, a better understanding of cellular processes between the ECM ligand proteins and the cell membrane receptors will give us tools to engineer the development of cell cultures (potentially human tissue) to give desirable properties. For the development of bioactive polymer surfaces, it is important to be able to control and retain the conformation of immobilized ligand groups, since this has an effect on the cell-surface interactions. Surfaces prepared by coupling of ligands directly to the surface can exhibit reduced biological activity owing to steric hindrance or conformational changes. A spacer group between the matrix and the ligand may facilitate effective binding and shield the ligand from the surface to circumvent these problems as will be presented here.

2:00 PM FF4.2/DD4.2 BIOLUBRICATION: THE SHEAR OF ADSORBED POLYELECTROLYTES AND OF POLYMER BRUSHES: Jacob Klein, Xueyan Zhang, Manfred Wilhelm, Weizmann Institute of Science, Rehovot, ISRAEL.

The lubrication of mammalian joints takes place at the interface between articular cartilage layers as they rub past each other. To study and understand this effect at a microscopic level, we have used a
surface force balance with unique sensitivity in measuring both normal and frictional forces to examine the friction between compressed layers of neutral surfactants and charged hydrophilic polymers. Our results reveal that entropic factors play a crucial role in reducing the frictional forces and may thus underlie the extremely efficient lubrication known to be active in biological joints. For the case of neutral surfactant monolayers, configurational entropy and the resulting from excluded volume effects leads to large osmotic repulsion between the compressed surfaces, and enables large loads to be borne with a very fluid interfacial layer as they slide past each other. For the case of charged monolayers, the interlayer potential including the electrostatic interactions plays an additional role in the counterions in solution, and in this case it is their translational entropy which leads to an osmotic repulsion between the monolayer compressed monolayer surfaces. We present recent results on this effect which reveal the remarkable effect of these entropic factors in reducing friction, and which may point to possible strategies for better design of artificial joint implants.

2:15 PM FF4.3/DD4.3
NOVEL MICROPOROUS BIO-INTERFACE MATERIAL PREPARED FROM POLYELECTROLYTE MULTILAYERS
Jonathan D. Mendelsohn, Anne M. Hayes and Michael F. Rubner, MIT, Department of Materials Science and Engineering, Cambridge, MA; Christopher J. Barrett, McGill University, Department of Chemistry, Montreal, CANADA.

A novel process has been developed to create large area, highly uniform microporous bio-interface materials. The relatively new layer-bylayer (LbL) self-assembly process, whereby oppositely charged polymers are sequentially adsorbed from dilute aqueous solutions onto an immersed substrate, was used to fabricate microfiltration thin films from the polymer poly(acrylic acid) (PAA) and the polyelectrolyte poly[allylamine hydrochloride] (PAH). It has been found that the adsorbed polymer layer separations that occur on PAH/PAA multilayers is pH conditions of 3.5-7.5, respectively, simply by briefly exposing the films to aqueous solutions of a pH of 3.5-2.5. AFM characterization shows that this pH-induced phase separation leads to a highly microporous morphology (up to a 2/3 volume of pores) with pore sizes of 10k-50 nm. While PAA/PAH multilayers have been used as a model system to investigate the pH-sensitive porosity phenomenon, efforts are currently underway to create microporous films from charged biopolymers, for example, incorporating charged drugs, enzymes, or other bioactive molecules, e.g., cell adhesion molecules for specific bio-interface activity, into the multilayers will be investigated. The LbL method also advantageously enables the in situ incursion of nanoparticles of silver, known as metalhalide, into the film. The pH-dependent porosity and swelling in these multilayers allow for controlled drug release capabilities, and these porous films are also foreseen as dyads membranes and scaffold materials. Furthermore, this simple porosity transformation may lead to an alternative strategy to the polyelectrolyte complex condensation technology routinely used to encapsulate cells or drugs. Since it assembles one molecular layer at a time with nanoscale precision, the LbL technique can be coupled with this unique pH-induced phase separation, could be a novel approach to synthesizing porous biomaterials with highly tailored features, including well-defined surface and interfacial properties.

2:30 PM FF4.4/DD4.4
POLYCAITONINDUCED STRUCTURAL REARRANGEMENTS IN NEGATIVE LIPOSOMAL MEMBRANES
Alexandre Yaremaev, Viktor Kalomov, Moscow State Univ, School of Chemistry, Moscow, RUSSIA.

Permanently growing biomedical applications of synthetic polyelectrolytes require to study their behavior in biological environment and especially, their interaction with cells. In the latter case, spherical bilayer vesicles composed of lipid molecules can be used as cell-mimetic objects. It is known that a cell membrane usually carries net negative charge. Therefore, we focused on synthetic polycations, interacting with neutral and negative vesicles. Interaction of polycations with liquid vesicles can be accompanied, in certain systems and under certain conditions, by lateral lipid segregation (narrowing of the liquid separated from the polymer-accelerated transmembrane migration of lipid molecules) and incorporation of adsorbed species into the liposomal membrane, aggregation of vesicles and their disruption. Electrically adsorbed polycation, if not additionally induced by an attached hydrophobic group, can be completely removed from the membrane surface by recomplexation with polynions. The above mentioned phenomena were examined depending on structure and line charge density of polycation and on the content of charged lipids, vesicle plane state and size, as well as ionic strength of solution. It is likely that the observations we made might be useful to interpret biological effects of polyelectrolytes and multicharged polymeric constructs.

3:15 PM FF4.5/DD4.5
BIOFUNCTIONALIZATION OF SURFACES WITH PEPTIDE AMPHIPHILES. Mathematical Modeling, College of Engineering, University of California, Santa Barbara, CA

Peptides carry enormous capacity and versatility for participating in specific ligand-receptor interaction. As a class of proteins, they offer the possibility of delivering a selected activity into constructing a biofunctionalized surface or interface, absent other, undesired activities present in the full protein molecule (e.g., immunogenicity). We have been developing a self-assembled and cell recognition properties of peptide fragments (thus far derived from extracellular matrix fragments) that have ligated synthetically by attaching a phospholipid-mimic, double-chain, hydrocarbon tail. Lipidation confers interesting amphiphilic and self-organization properties on the molecules and enables the stable deposition of layers of peptide amphiphiles on surfaces. Specifically, we have been using peptide amphiphiles to functionalize surfaces with peptide fragments derived from collagen and fibronectin. Deposition of these molecules by Langmuir-Blodgett methods gives a very high degree of control over the density and orientation of the surface molecules. This in turn enables us to explore the effects on cell response of peptide density and molecular architecture variations with a great degree of precision. The principal results so far, which seem to have some commonality for different kinds of peptides, are that there is an optimum peptide density for each kind of peptide fragment, and that the architecture of peptide presentation is a very sensitive controller of biocompatibility. Examples will be given of these effects.

3:45 PM FF4.6/DD4.6
POLYPELECTROLYTE BRUSHES: SIMULATION AND SCALING THEORY
Christian Seidel, Felix S. Casjens, Roland R. Netz, Max-Planck-Institute of Colloids and Interfaces, Golm, GERMANY.

Polypelectrolyte brushes are important with respect to fundamental as well as applied research. However, both in experiment and in theoretical work, polyelectrolytes are a challenging subject with many unresolved problems. In this situation, computer simulations are a powerful tool to validate theoretical models, and to provide guidelines and regimes that are not easily observable experimentally. We use stochastic molecular dynamics to study end-grafted polyelectrolytes for varying chain lengths, anchoring densities, degrees of ionization, concentration sizes and Bjerrum lengths. The model includes counterions explicitly, and the full Coulomb interaction is treated using a direct summation technique proposed by Lekner and modified by Sperb. At Bjerrum lengths slightly below the Manning condensation limit we obtain new collapsed phases for strongly charged chains. The brush height scales linearly with grafting density, a behavior which is known for uncharged brushes in poor solvent. This is in disagreement with the accepted scaling law for the osmotic regime, which states that the brush height becomes independent of grafting density. We believe that this is caused by strong counterion condensation effects. The new brush regimes can be understood by an extended scaling model which includes Coulomb correlation between charged monomers and counterions. For partially charged chains a transition occurs at a cross-over between the scaling regimes given by theory. Reducing the counterion size we find the osmotic regime in agreement with our scaling theory phase diagram. Varying the Bjerrum length we obtain a non-monotonic behavior of the brush thickness with a maximum at intermediate coupling where already a considerable part of counterions has left the brush.

4:00 PM FF4.7/DD4.7
ADSORPTION OF HYDROPHOBIC POLYELECTROLYTES (PSE) ONTO NEUTRAL SURFACES. O. Tsibolodol, R. Ober, C. Williams, Collège de France, Paris, FRANCE.

We are interested in the adsorption of strongly charged polyelectrolytes (Polyethylene sulfonate with charge of between 30 and 90 %) on neutral and hydrophobic interfaces. The case of solution/air interface is investigated by Langmuir trough measurements, ellipsometry and X-ray reflectivity. The low adsorption rate, common for most polyelectrolytes, is also observed here and is explained by an \textit{electrostatic barrier} effect. A maximum of adsorption with the rate of suction is observed. We invoke \textit{chain barrier} effect to explain this phenomenon: due to adsorbate chains that are collapsed and form isolated globules which are repelled by a neutral surface. After rinsing adsorbed layers with pure water, the description is not changed, showing the existence of a \textit{barrier that prevents complete desorption}. The existence of these energetic barriers lead to strong hysteresis phenomena and the state of an adsorbed layer in contact with a solution strongly depends on its history. Concurrently, adsorbed layers at the solid/liquid interface are studied by a new technique of high-energy X-ray reflectivity across water adsorbed layers are always very thin (less than 100Å) confirming the fact that the layers are monomolecular.
PROTEIN ADSORPTION ONTO CHARGE-REGULATED SELF-ASSEMBLED MONOLAYERS

Anomalous adsorption of polyelectrolyte adsorption onto charge-regulated self-assembled monolayers (SAMs) has been observed in recent experiments (Barlow and Mayes, submitted). In these studies, the charge density of the surfaces was changed through variations in the pH. The thickness of the adsorbed layer was observed to change abruptly from 2.5 to 4.5 over a narrow pH range. Here we extend the investigation to include the adsorption of charged biopolymers (e.g., polyelectrolyte) onto these surfaces and find that the adsorbed layer thickness is significantly influenced by the charge density of the surface. The results suggest that the adsorption is governed by the interplay of electrostatic and hydrophobic forces.

ENDOTHELIAL CELL GROWTH AND PROTEIN ADSORPTION ONTO HETEROGENEOUS SELF-ASSEMBLED INTERFACES

Biological interactions onto interfaces such as endothelial cell adhesion and growth are of great importance to medical technologies involving artificial implants and tissue engineering. The success of a biomaterial depends largely on how well surfaces promote or inhibit protein adsorption and cell attachment. It is believed that protein adsorption onto these surfaces and then mediate interactions with cells via specific interactions between protein domains and integrin cell membrane receptors. The role of the surface in controlling responses, however, is not well understood. The effects of surface chemistry features such as functional group density and surface structure have not been well studied largely due to lack of availability of well controlled and characterized surfaces. We report studies of endothelial cell adhesion and growth and protein adsorption onto fabricated heterogeneous self-assembled interfaces composed of gold, silicon dioxide, and polymer-rich materials. Surface composition and site arrangement were studied using x-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). We found that endothelial cell growth was maximized onto mixed functionality surfaces compared to single component surfaces. There were differences in cell growth between the two mixture types which we attribute to higher degrees of phase segregation in the COOH-CH3 compared to COOH-OH mixtures. The adsorption and stability of albumin (Alb), vitronectin (Vn) and fibronectin (Fn) varied with mixed SAM surface composition. Cell growth was maximal on the environments that provided the highest surface fraction of adhesive proteins and the highest Vn adsorbability. These results suggest that the mixed surfaces control the composition and binding strength of the adsorbed proteins on the substrate layer which affects cell receptor interactions and mitogenic activity.

4:45 P.M. FP4.30/DD4.10

PROTEIN INTERACTIONS WITH PDMS DURING INTERFACIAL PDMS RESTRAINING AND DEFORMATION

We report the influence of surface properties on the adsorption kinetics of immunoglobulin onto modified PDMS (polydimethylsiloxane) surfaces. It was found that the hydrophobic surface of native PDMS has a high affinity for immunoglobulin, which adsorbs in the absence of protein. In the presence of protein, the hydrophobic surface of the surface recovery (as evidenced by contact angle evolution). The affinity, rate of adsorption, and ultimate coverage of immunoglobulin also increase, but not at the rate of the contact angle evolution. Stretching the surface after corona treatment reduces the increase in protein adsorption. The recovery is attributed to elution from the PDMS surface when the surface is exposed to water after its chemical treatment.

SESSION FF5: POSTER SESSION

INTERFACE, ADHESION, AND PROCESSING IN POLYMER
separated films. We report on the study of mapping phase dynamics of polymer blend films using near-field scanning optical microscopy (NSOM). NSOM images of model layers and macroscopic observations of the polymer films were compared. Simultaneous topography, transmission, and fluorescence NSOM images taken on these samples at different annealing stages revealed many previously unobserved details of phase separation. For example, our results showed that poly(3-octylthiophene) molecules annealed even below the glass transition temperature (Tg) of bulk polythiophene when these molecules are cast with poly(styrene) which has a lower Tg and acts as a plasticizer. Samples annealed at temperatures above or below the Tg of poly(3-octylthiophene) showed that poly(3-octylthiophene) covers the poly(styrene) in these films. Artifacts that appear in near-field data on samples with large or varying film thickness or topography were also identified and modeled, which is currently being pursued towards a correct quantitative evaluation of these films.

F5S.4 POLYMERIZATION KINETICS OF NORBORNENE ON GOLD NANOPIERCLES. Qinghong Fu, Dale L. Houser, Thomas A. P. Seery, Institute of Materials Science, University of Connecticut, Storrs, CT.

Polymerization of norbornene was initiated by a ruthenium alkylidene (Grobb catalyst) on modified gold nanoparticle surfaces. 1H-NMR was used to determine the polymerization kinetics of norbornene on modified gold nanoparticles as well as in solution. In Norbornene-2-carbonyl chloride was synthesized in order to modify the gold nanoparticles that were previously prepared with hydroxyl end groups to introduce norbornene on the surfaces. Bis(tricyclohexylphosphine) benzylidene ruthenium(IV) chloride, was then used to react with the surface bound norbornene moieties. The concentration of the monomer peak during the polymerization was calculated according to the changes of the areas between the protons on norbornene double bonds and the protons on double bonds in polymer backbone. It was found that polymerization of norbornene at the same monomer to catalyst ratio by the homogenous catalyst was completed in less than 10 minutes. However, the polymerization on modified gold exhibited first order polymerization kinetics.

F5S.5 THERMOMECHANICAL RELIABILITY MODELING OF POLYMER/METAL INTERFACES IN MICROELECTRONIC APPLICATIONS. Seung Yeong Ko, Robert Bonneau, John Davis, Stanford University, Department of Materials Science and Engineering, Stanford, CA; Amol Kirikar, Intel Corporation, Assembly Technology, Chandler, AZ.

Adhesion and progressive (time or loading cycle dependent) debonding may significantly affect the performance and reliability of microelectronic packaging structures. In particular, temperature and moisture environments present in the semiconductor industry can cause fatigue of the structures. These fracture phenomena are driven by stress, temperature cycling during use, and mechanical or vibrational loading. This study is focused on modeling the debonding that occurs in microelectronic components. Specifically, debonding was investigated on interfacial adhesion and subcritical debonding of a representative polymer/metal interface under both monotonic and cyclic fatigue loading conditions. While the steady-state interfacial fracture energy is known to be insensitive to moisture, increasing humidity decreased the initiation value for debonding, even at low partial pressures of water vapor. Fatigue debond extension threshold values and the entire subcritical debond curves were extremely sensitive to temperature, and proportional to the relative humidity of the water in the test environment. Debonding was modeled using chemical reaction rate theory and reaction mechanism at the debond tip. Activation energies were determined for the different stages of interfacial debonding and growth and a model is presented for the effects of loading, humidity and temperature on subcritical debond growth rate behavior.

F5S.6 STUDY ON POLYSTYRENE ENCAPSULATED EXFOLIATED GRAPHITE/SBS COMPOSITES. Peng Xia, Kecheng Gong, Polymer Structure & Modification Res. Lab, South China University of Technology, Guangzhou, PR CHINA.

Inorganic particulate-filled polymer systems a significant problem is caused by the nonuniformity of dispersion of the discrete phase in the polymer matrix, giving rise to fluctuations in the composite properties. Generally surface modification of the filler by a suitable coupling agent partly reduces this problem by enhancing surface interaction between the two phases. Here a surface modification method of filler's polymerization by polymerizing monomer in the presence of filler is put forwarded. Surface modification of exfoliated graphite is carried out by encapsulating exfoliated graphite by styrene polymerization. Then we introduce the encapsulated exfoliated graphite into styrene/butadiene/styrene (SBS) by melt mixing. Result shows encapsulation benefits the dispersion of exfoliated graphite in the composite. The composite has a relative low thermal conductivity and low density compositions are obtained.

F5S.7 NOVEL SILICON ORGANIC COMPOUNDS TO ENHANCE INTERFACIAL ADHESION AND PROCESSABILITY OF POLYMERS. Wei Yu, Cheng Gong, Polymer Structure & Modification Res Lab, South China University of Technology, Guangzhou, PR CHINA.

Traditionally, silicon-containing films must be surface modified with organosilane coupling agent to enhance adhesion and processability of the polymer. After addition of the silicon organic compounds, the chemisorption region between fillers and polymer developed acting as binders, coupling agents, lubricants, and additive. A small amount of the silicon organic compounds is used to modify precipitated silicon on films to improve adhesion and processability. We show the specific properties of rubber, the results show that the properties of the silicon rubber can be adjusted by the modification using organosilanes-modified fumed silica.

F5S.8 ADHESION MICROMECHANICS OF SOFT POLYMERIC ADHESIVES ON SILICONE RELEASE COATINGS. General Josse, Constantino Creton, Laboratoire PSCM, ESPST, Paris, FRANCE.

We investigated the adhesion mechanism of model acrylic pressure-sensitive-adhesives (PSA) on silicone release coatings. We used a customdesigned probe test apparatus, allowing the video observation of the mechanisms of deformation in situ, while a flat-ended cylindrical probe was removed from the adhesive film. The adhesive was an emulsion copolymer based on n-butyl acrylate/2-ethylhexyl acrylate and acrylic acid. A layer approximately 100 μm thick was deposited by doctor-blading on a microscope glass slide. The release coatings were crosslinked elastomers of poly(dimethylsilicone) and were deposited by spin-coating (thickness of about 1 μm) on the previously polished steel probe. The adhesion energy of the acrylate adhesive on a surface coated with a PDMS elastomer was very low. However, when a rigid and relatively bulky resin was incorporated in the elastomer network, the adhesion energy increased significantly, while the surface tension of the silicone was hardly modified. We investigated the role of the resin in the debonding mechanisms and the coupling existing between the rheological properties of the adhesive, the bulk deformation occurring in the adhesive layer, and the surface properties of the silicone layer. We observed in particular that the presence of the polar resin in the elastomer favored the nucleation of multiple cavities in the interface, which helped to enhance the propagation of finger instabilities. Also the growth rate of these multiple interfacial cracks for a given value of applied average strain was much lower for the resin-rich elastomers favoring therefore the formation of fibrils, which increased the adhesion energy.

F5S.9 THE EFFECTS OF GRADED ELASTIC AND YIELD PROPERTIES ON ADHESION IN AN UNDERFILL-SILICON DIOXIDE SYSTEM. Dan Maidenberg, Reinhold Dauskardt, Stanford University, Department of Materials Science and Engineering, Stanford, CA.

Adhesion of polymers is greatly affected by the amount of plastic deformation in the polymer. In this study, we measured the known effects of underfill settling, where hard silica beads tend to accumulate toward the bottom of the underfill layer, is utilized to provide graded elastic and plastic properties in the polymer layer. Samples were fabricated with an underfill layer sandwiched between two silicon substrates. Significant settling of the underfill beads was achieved with standard cure conditions. Samples were cut into double cantilever beam fracture mechanics specimens to accurately quantify critical adhesion energy. Comparisons were made between the interface to which the beads had settled and the interface away from the settled region. Cross-section SEM micrographs were analyzed to determine the volume fraction of the silica beads as a function of position in the
layer. Published mechanical models were employed to determine the
effect of the bands on yield strength and modulus. This information was
used to predict plastic zone size and plastic energy dissipated
during debonding, which control the overall fracture resistance.

F5.10

ADHESION STRENGTH AND PEELING ANGLE MEASURED ON THE POLYIMIDE/Cr INTERFACES. Jin-Won Choi, Kwang-Young Lee, Tae-Sung Oh, Hong Ick Univ, Dept of Metallurgical Engineering and Materials Science, Seoul, KOREA.

Adhesion strength of polyimide/Cr interfaces was measured using T-peel test on polyimide/Cr/Cu structure fabricated on RF
plasma-treated BPDA-PDA polyimide, and correlation between adhesion strength and peel angle was investigated. Adhesion
strength of BPDA-PDA/Cr interface decreased with increasing the
Cu/Cr film thickness to a critical value, and then increased with
further increasing the metal film thickness. When the thickness of
Cu/Cr metal film was below a critical value, plastic bending of the metal
film occurred during T-peel test. However, plastic bending of
polyimide has been observed with metal films thicker than a critical
thickness. A critical thickness of metal film, where transition from
metal bending to polyimide bending occurred, became thinner with
decreasing the yield strength of metal film and increasing thickness of
polyimide. Without depending on the plastic bending of metal film or
polyimide, adhesion strength increased with increasing the peel
angle during T-peel test.

F5.11

19F NMR INVESTIGATION OF THIN FILM ZDOl BACKBONE DYNAMICS ON CARBON SURFACES. Yongjun Kim, Christopher A. Klug, Department of Chemical Engineering, Stanford University, Stanford, CA; Charles G. Wade, Materials Analysis and Characterization, Almaden Research Center, IBM, Sunnyvale, CA.

Perfluoropolyether lubricants are used to decrease dynamic as well as
static friction during head-disk contacts in today's hard disk drives.
Increasing growth in storage densities poses great demands on the
performance of these lubricants. Comparisons of the 19F NMR spine lattice relaxation time, T1, and spin-spin relaxation time, T2, for
molecularly thin Zdo1 (HO(CH2CF3)OCF=CF2OCF=CF2OCF3OH; p/q = 0.7,
Mw/Mn = 1.5, MW=20000) film on carbon surfaces were made to
obtain information about the backbone mobility of the surface bound
polymer. The spin-spin relaxation time decreases and the line width
increases with decreasing Zdo1 coverage, while the spin-lattice relaxation time stays constant as the coverage of Zdo1 is varied.
Further variable temperature relaxation studies show that the fast,
local motions of the polymer are not affected while the slower,
longer-range motions are greatly restricted when the polymer is
adsorbed on the surface. These results correspond to the firm
conformation of the polymer described by other studies using surface
energy and TPD measurements and ab initio calculations.

F5.12

CHEMICAL AND STRUCTURAL CHARACTERIZATION OF SILANE ADHESION-PROMOTING FILM FOR USE IN MICROELECTRONIC PACKAGING. Maura Jenkins, Dimitrios Panasidis, John C. Brennan, Stanford Univ, Dept of Materials Science and Engineering, Stanford, CA.

We investigate the mechanism by which aminosilane adhesion
promoters strengthen the interface between hexamethyldisilazene (BCB) and an oxidized silicon wafer. The adhesion promoter film
is characterized using AFM and angle-resolved XPS to identify surface
bond density, morphology, and chemistry. Films produced from a
range of adhesion promoter silane concentrations have been
characterized. The 0.83% solution produces a single monolayer on
the surface, and the 0.14% concentration produces two monolayers.
In both cases, the directionality of the films is preserved. That is, the
amine functional group is oriented toward the BCB, and the silicon
groups are oriented toward the silicon oxide substrate. Finally, this
solution concentration is optimized with respect to the mechanical
strength of the interface. Additionally, there is evidence that a short
care of the adhesion promoter might result in a significant
improve adhesion strength, and FTIR is used to identify the chemical
mechanism of this enhancement. Characterization of this adhesion-promoting film and the
interfaces formed with silicon oxide and BCB allows us to evaluate
adhesion strength with processing conditions through an
understanding of chemical and microstructural mechanisms.

F5.13

INTERFACIAL FRACTURE OF THIN EPOXY FILMS ON ALUMINUM. A. Strey, Xerox Corporation, Webster, NY; N.R. Moody, Sandia National Laboratories, Livermore, CA; J.A. Emerson, Sandia National Laboratories, Albuquerque, NM; W.W. Gerberich, University of Minnesota, Minneapolis.

Interface structure and composition are two of the most important
factors controlling performance and reliability of components where
changes can lead to degradation and premature failure. The
adhesion strength of an interface is limited by the
established test techniques for measuring adhesion. We have therefore
developed nanoinjection techniques developed for metal and
ceramic thin film systems with mechanics-based models to determine
disparate fracture energies in a 0.6 µm thick borosilicate glass coating
on ZnO glass and a 1.6 µm thick epoxy coating on sputtered aluminums. The tests on the well-characterized sputtered aluminums
demonstrated that accurate interface fracture energies could be
obtained from free surface polymer films using mechanics-based
models for circular blister formation. These tests were then used to
assess the effects of silane interlayers on adhesion of epoxy to
aluminums. The tests showed that, without the epoxy film interlayer,
the epoxy film delaminated following nanoinjection at a fracture energy of 0.75 J/m². With the interlayer the films did not delaminate, even
when the indentation exceeded the epoxy layer thickness. In this
presentation these results will be used to show that interface
fracture energies can be obtained from free surface glassy polymer
films using nanoinjection and analysis techniques. In addition, the
results will be used to show that the use of adhesion
enhancing interlayers can significantly increase resistance to interfacial fracture in
epoxy film systems.

This work supported by U.S. DOE Contract DE-AC03-94ER14080.

F5.14

CHARACTERIZATION OF THE POLYMER-FILLER INTERFACE IN SILICA-REINFORCED POLYETHYLENE IN DOSESIATION. Allen T. Chen, Robert Maxwell, David Chambers, Bimol Mahas and James Lemberger, Chemistry and Materials Science, Intelligence, Livermore National Laboratory, Livermore, CA.

Silica is an effective reinforcing agent for silicone polymers due to the
hydrogen bonds that form between the polymer and the silica filler
particles. While known to be important, characterization of the interactions at the polymer-filler interface in these systems is difficult.
In this paper, a two-stage solvent swelling technique was employed to
determine the individual contributions of the polymer matrix and
the filler phase to the overall crosslink density of the filled rubber. This
technique can be used to determine the extent to which the
copolymer-filler interactions dictate the overall material properties.
Changes in the aggregate crosslink density of silicone-reinforced
polymer composites were observed as a result of gamma radiation in
air and inert environments. The results showed how hydrogen bonding at the polymer-filler interface dominates the overall properties of the
composite material. Irradiation in air showed a decrease in hydrogen
bonding at the polymer-filler interface, while vacuum-irradiated
samples revealed the opposite effect. The polymer matrix exhibited an
increased crosslink density upon irradiation in both air and vacuum.
These results were supported by solid state NMR experiments that
exhibited similar changes in T2 relaxation times as a function of
dose and environment. T2 times were empirically correlated to the
overview mobility of the polymer phase.

Analysis of the volatile degradation species by GC/MS analysis revealed
a number of unexpected species formed as a result of irradiation in the
different environments.

This work was performed under the auspices of the U.S. Department
of Energy by the Lawrence Livermore National Laboratory under
contract W-7405ENG-48.

F5.15

ADHESIVE BEHAVIOR OF LATEX PARTICLES. Maude Portuguesi, Vasileios Koutsos, Liliane Légé, Laboratoire de Physique de la Matière Condensée, URA CNRS 792, Collège de France, Paris, FRANCE.

Nanometric latex particles are commonly used as binders in many
industrial applications. Macroscopic adhesion tests on these films
show that the viscoelastic dissipation is the predominant contribution
to the adhesion energy for a very large range of velocities. This
dissipation develops in regions of the sample with dimensions large
compared to the size of one latex particle. As the latex film has a
particular structure due to the reminiscence of the interfaces existing
between particles, there could be an interplay between this structure
and the adhesive behavior, especially when the size of the sample
comes comparable to the particle size. To gain information in these small length scales, we have
investigated the rupture of contacts between a single latex particle
and the tip of an atomic force microscope, using force/displacement curves.
Strong elongation of the particle is then observed and the rupture
processes is in a stick-slip fashion. The elongation between two nanometric points of detachment and the separation energy depend strongly on the
tip velocity and are sensitive to the particle neighborhood (i.e. to the
fact that the particle pertains or not to a cluster, and to the cluster size. This indicates that, under our test conditions, the rupture of contact can not be explained in terms of thermodynamic work of adhesion. Viscoelastic and plastic dissipations occur in a zone whose dimensions are governed both by velocity and by sample size. Compared to the other adhesion tests, the nanometric one highlights that the adhesive force of latex at low concentration depends not only on molecular characteristics of the latex but also on cooperative effects of the nearby particles.

FFS.16
DETERMINATION OF SUB-MICRON ORIENTATIONAL ORDER PARAMETERS IN THERMOTROPIC LIQUID CRYSTAL POLYMERS.
Jennifer E. Taylor, Matthew Libera, Stevens Institute of Technology, Dept. of Chemical, Biochemical, and Materials Engineering, Hoboken, NJ.

A novel electron-optical approach has been developed to evaluate structure-pro granularity relationships in liquid crystal polyelectrolyte (LCP) fibers at sub-micron length scales. This method is based on both digital control and data acquisition from a 200keV Transmission Electron Microscope (TEM). Spatially resolved diffraction data can be used to quantitatively define molecular orientation with a spatial resolution that is more than ten times better than X-ray techniques. Furthermore, the degree of orientation from each electron beam can be correlated with real-space image data. This paper describes the application of spatially resolved orientation mapping in drawn and annealed HBA/HNA fibers. The average orientational order parameter increases, as expected, when drawn fibers are annealed. Director maps constructed at a spatial-resolution of ~100nm show laments in local order that can be characterized by the orientation parameter. The fiber orientation parameter is 0.10 in diameter, while the average in larger domains. In sheared flow, the domains are more pronounced. Some local regions (~100nm) in the annealed fibers appear to have crystallite-like order.

FFS.17
AMINE-BIS-QUINOME POLYMERS AS COATINGS THAT PROTECT IRON AGAINST CORROSION.
Mieqing Han, Haimin Bie, Gerry W. Warren and David E. Nanes.

Amine-quinone dimine monomers were prepared by reduction of benzoquinone with either 4,4′-methylene diamin or 4,4′-oxydianine. The monomers were then used to prepare a series of amine-quinone polymers by condensation with a tetracarboxylic acid dihydride, either 3,3′:4,4′-benzenedicarboxylic acid dihydride, 4,4′- (hexahydroxydipropylamino)diphenylmethane dihydride, or the polyaniline, followed by thermal imidization. The polymers had thermal and decomposition temperatures in excess of 300°C. An amine-quinone polyaniline amide was coated onto iron squares, and then thermally imidized. For comparison, a conventional polyaniline coating was prepared that contained 4,4′-methylene diamin and 3,3′:4,4′-benzenedicarboxylic acid dihydride. The coatings were exposed to sodium chloride electrolyte and electrochemical impedance spectroscopy was used to characterize the changes that occurred. After three days exposure, the second time constant of the conventional polyaniline coating was due to an electrochemical double layer and was indicative of electrolyte diffusing through the coating and breaking the adhesive bond between the polymer and the metal. The iron showed evidence of corrosion. After more than 24 days exposure, the coating containing the amine-quinone polyaniline did not show a second time constant. Clearly the adhesive bond between the amine-quinone polyaniline and the iron surface was stronger and better able to resist attack by moisture.

SESSION F6/EE.1 JOINT SESSION: NANOSTRUCTURES-FROM THIN FILMS TO BULK
Chair: Peter F. Green and Sumit K. Kumar
Wednesday, Morning Session April 26, 2000
Metropolitan 1 [Angent]

3:50 AM *FF6.1/EE.1
STRUCTURE, DYNAMICS, AND PROPERTIES OF POLYVINYLCHLORIDE BASED PENTABLOCK COPOYMERS.
Frank S. Bates, Martin Vigild, Kim Chaffin, Chin Chu, University of Minnesota, Minneapolis, MN; Glenn Fredrickson, UC Santa Barbara, Santa Barbara, CA; Stephen Hahn, Dow Chemical Company, Midland, MI.

Polyvinylchloride (PVC), which is produced by catalytically hydrogenating polyethylene, is characterized by a glass transition temperature of 170°C, a high modulus, and excellent optical properties. However, owing to a large entanglement molecular weight (M = 40,000 g/mol) this material is extremely brittle thus restricting the range of applications. In polymer technological work of adhesion, viscoelastic and plastic dissipations occur in a zone whose dimensions are governed both by velocity and by sample size. Compared to the other adhesion tests, the nanometric one highlights that the adhesive force of latex at low concentration depends not only on molecular characteristics of the latex but also on cooperative effects of the nearby particles.

9:00 AM *FF6.2/EE.2
DOMAIN MORPHOLOGY IN LIQUID-CRYSTAL POLYMER BLENDS.
Amelina L. Lopez, Andrea J. Liu, UCLA, Department of Chemistry and Biochemistry, Los Angeles, CA; Sharon C. Glover, Stephen A. Langr, NIST, Gaithersburg, MD.

Small-molecule liquid crystals and polymers dimerize into two coexisting phases, one rich in polymer and isotropic, and the other rich in liquid crystal and orientationally ordered. The domain morphology of liquid-crystal/polymer blends therefore depends on the interplay of two kinetic processes, the kinetics of phase separation and the kinetics of phase ordering. We show that the interplay can lead to morphologies not observed in isotropic binary blends and to slower domain.

9:30 AM FF6.3/EE.3
ENTROPICALLY DRIVEN PHASE SEPARATION OF HEAVILY BRANCHED/LINEAR POLYMER BLENDS.
Valerie Chen, Frank S. Bates, Timothy P. Lodge, Univ of Minnesota, Dept of Chemical Engineering and Materials Science, Minneapolis, MN.

Small Angle Neutron Scattering (SANS) has been used to examine the melt phase behavior of heavily branched random copolymer poly(ethylene/ethylglycol) blended separately with two linear random copolymer poly(ethylene/ethylhexylene). Molecular architecture is the only difference between the two components of the blends. The molecular weights of the two linear random copolymer poly(ethylene/ ethylhexylene) are 57 kg/mol and 209 kg/mol, respectively. The heavily branched polymer has a molecular weight of 750 kg/mol. Unlike many previous studies that concentrate on the short branched species, this heavily branched random copolymer consists of 54 long branches on average, where each of them has molecular weight of 12 kg/mol. Three different volume compositions of 25/75, 50/50, and 75/25 have been investigated for both types of blends. SANS results indicate that all blends containing the low molecular weight linear polymer (57 kg/mol) form single phase mixture while all blends containing the high molecular weight linear polymer (209 kg/mol) phase separate.

9:45 AM FF6.4/EE.4
PHASE SEPARATION IN POLYMERIC FLUIDS SUBJECT TO A TEMPERATURE GRADIENT.
Minqin Li, Shengqin Xu, Esmeana Kamadulis, University of Toronto, Department of Chemistry, Toronto, ON, CANADA

We studied phase separation in thin horizontal layers of binary and ternary off-critical polymeric fluids subjected to a vertical temperature gradient. Under particular conditions, surface tension-driven or buoyancy-driven convection occurs in the liquid layer that is imposed on phase separation in the system. Convection produces hexagonal and roll patterns with a high degree of order and symmetry on the length scales substantially smaller than in single-component systems. We demonstrate that convection patterns can be trapped in a solid state by using UV-induced polymerization of the reactive oligomers.

10:15 AM FF6.5/EE.5
PHASE BEHAVIOR AND TRANSITIONS IN POLYMERS COMPRISING MILDLY AMPHIPHILIC MONOMERS.

A series of oligomeric and polymeric materials comprising mildly amphiphilic monomers have been investigated by OM, TEM, and rheological analysis in order to observe the process by which they order and to determine the structure of the resulting phases. Polyelectrolytes with pendant oxoalkyl groups were used. The phenyl groups were bisubstituted in the 3 and 4 positions, or trisubstituted in the 3, 4, and 5 positions, with alkyl tails of various length. Narrow molecular weight polydispersity samples were obtained with the average degree of polymerization for different samples ranging from 4 to 1000. Low and high molecular weight materials that form the columnar hexagonal phase were compared, and our results show that the molecular weight of the small-molecule material that significant fluctuations of order remain up to 29°C above the
columnar clearing temperature. Cubic materials comprising quasi-spherical aggregates were also investigated. Electron diffraction and TEM imaging were used to identify the equilibrium structure and relationships with the molecular structure were examined. The authors gratefully acknowledge the financial support of NSF grants DMR-9608884 and DMR-9708281.

10:30 AM FF6.6/E6.6
THE MORPHOLOGY OF BLENDS OF LINEAR AND SHORT-CHAIN BRANCHED POLYETHYLENES IN THE SOLID STATE BY SMALL ANGLE NEUTRON SCATTERING, DIFFERENTIAL SCANNING CALORIMETRY AND TRANSMISSION ELECTRON MICROSCOPY. G.D. Wignall, J.S. Lin, Oak Ridge National Laboratory, Solid State Division, Oak Ridge TN 37831. R.C. Achten, Agricultural and Biological Sciences Division, North Carolina State University, Department of Chemical Engineering, Raleigh, NC. J.D. Londono, DuPont Central Research and Development, Wilmington, DE; L. Mundelko, Florida State University, Institute of Molecular Biophysics, Tallahassee, FL; P.H. Kim, Oak Ridge National Laboratory, Chemical and Analytical Sciences Division Oak Ridge, TN; G.M. Brown, Exxon Chemical Company, Baytown Polymers Center, Baytown, TX.

Differential scanning calorimetry (DSC), transmission electron microscopy (TEM), small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate the solid state morphology of blends of linear (high density) and model short-chain branched (linear low density) polyethylenes (HDPE/LDPE). SANS indicates that the mixtures are homogeneous in the melt for all compositions when the ethyl branch content in the copolymer is low (i.e. < 4 mol%) and the average molecular weight of the copolymer is about 100,000. However, due to the structural and melting point differences between HDPE and LDPE, the components phase segregate in the solid state and form a lamellar morphology with a periodicity, typically of about 10-20 nm, for a typical molecular weight of 100,000. The degree of crystallinity is controlled by the crystallization kinetics and DSC, TEM, SANS and SAXS experiments have been used to investigate the solid state morphology as a function of component composition, the thermal history and the rate of cooling. It is shown that the combination of scattering, microscopy and calorimetric techniques can provide detailed insight into the morphology on nm-length scales and give the compositions of the various populations in the lamellar crystals and the amorphous regions that they separate.

*Managed by Lockheed Mart in Energy Research Corporation under contract DE-AC05-84OR2140 for the U.S. Department of Energy.

10:45 AM FF6.7/E6.7
CRYSTALLOGRAPHY, CURVATURE AND COORDINATION OF BICONTINUOUS BLOCK COPOLYMER NANOSTRUCTURES. H. Jinnai, Kyoto Inst of Technology, Dept of Polymer Science & Engineering, Kyoto, JAPAN; R.J. Sizmann, North Carolina State Univ, Dept of Chemical Engineering and Materials Science & Engineering, Raleigh, NC; Y. Nishikawa, T. Hashimoto, Kyoto Univ., Dept of Polymer Science & Engineering, Kyoto, JAPAN; S.D. Smith, Procter & Gamble Co, Corporate Research Division, Cincinnati, OH.

Within relatively narrow composition windows, block copolymers and their blends with a homopolymer, a second copolymer or a solvent have been found to microphase-order into bicontinuous nanophases such as checkerboard, hedgehog or worm-like micelles (tricontinuous blend morphologies). In-depth investigation of these morphologies by transmission electron microscopy and small-angle X-ray scattering non-trivial due to the complexity of such nanophases. In this work, we provide a detailed analysis of the gyroid morphology in terms of its crystallographic signature [compared to that of the double-diamond], its interfacial curvature [compared to a constant-thickness model], and its composition distribution (including structural variation due to a grain-boundary) as discerned from transmission electron micrograph reconstructions. Results obtained from the gyroid indicate that the morphology is nearly cubic and possesses 3D symmetry. Three-fold coordination is, for the most part, observed and the distance distribution between junctions is determined. These results are quantitatively compared to those derived for the sponge, as well as those for polymer blends undergoing spinodal decomposition. The new averaged Gaussian curvature is not. Structural characteristics exhibiting evidence of universality are identified, and experimental results are compared to those of different morphologies for block copolymers in the intermediate segregation regime when possible.

11:00 AM *FF6.8/E8.8
SURFACE STABILIZATION IN MISCELLANEOUS BINARY POLYMER BLENDS. Christopher Forrey, Polymer Program, University of Connecticut, Storrs, CT; David Pau, Xerox Corporation, Rochester, NY; Jeffrey T. Koberstein, Department of Chemical Engineering and Applied Chemistry, Columbia University, New York, NY.

The composition at the air-polymer interface of a multi-component polymer generally differs from that of the bulk material. In an immiscible polymer blend, this phenomenon is referred to as blending- and depends on surface energy differences and interfacial considerations. In miscible systems, the phenomenon is called surface segregation, and the resultant surface composition is dependent on the balance between the exchange chemical potential required to segregate a given polymer to the surface and the resultant decrease in interfacial free energy. In this paper, we examine surface segregation for miscible blends of polystyrene and poly(1-vinyl methyl ether), a system with a lower critical solution temperature (LCST). Surface compositions were determined by analysis of surface tension data on polymer blend melts. Surface composition depth profiles were determined by angle dependent X-ray photoelectron spectroscopy.

Data are presented for blends containing either equal or preferentially segregated polystyrene. Preferential segregation changes the bulk interaction parameter and allows investigation of its effect on the surface segregation of the blend. We model the data using the Schmidt-Binder approach to square gradient theory. For the required equation of state, we employ both the incompressible Flory-Huggins theory and the Sanchez-Lacombe-Buhman extension of compressible lattice fluid theory. The latter approach provides a more appropriate description of the bulk phase behavior for LCST blends.

11:30 AM FF6.9/E6.9
SOLID-STATE BLENDING AND COMPATIBILIZATION OF POLYMER BLENDS BY CRYOGENIC MECHANICAL ALLOYING. Andrew G. Smith, Richard Sambles, North Carolina State University, Department of Materials Science and Engineering; Carl Koch, North Carolina State University, Department of Materials Science and Engineering; Ralph, NC, USA.

Cryogenic mechanical alloying has been employed to blend poly (methyl methacrylate) (PMMA) with up to 25 wt% polystyrene (PS) and poly (ethylene-alt-propylene) (PEP). High-energy ball milling in the solid state is considered here as a highly non-equilibrium processing alternative to avoid the phase separation that often plagues polymer mixing in the melt or in solution. Mechanical milling of the individual polymers reveals that their molecular and bulk properties depend sensitively on milling time, post-milling annealing, and for PMMA, temperature. While molecular weight reductions are observed for PMMA and PEP, PI undergoes crosslinking due to the formation of free radicals during milling. In addition, the molecular weight decay for PMMA is more pronounced at higher temperatures, in contrast to the expectation of increased brittleness with decreasing temperature. Characterization of the as-milled blends by scanning transmission X-ray microscopy and transmission electron microscopy has demonstrated intimate (nm-scale) mixing within the blends, with the degree of mixing increasing with increasing milling time. Phase domains as small as 10 nm are observed after alloying for 10 hrs. Post-milling of the blends above the Tg of PMMA (which is dependent on milling time) induces morphological evolution, which varies for blends with PI and PEP. In blends comprised of thermodynamic incompatibility, expectedly drives phase separation within the system so that the intimate mixing gained as a result of milling is largely lost. Conversely, PI crosslinking hinders molecular mixing so that the milling-induced blend morphology is retained. For PMMA and PI, the most part, retained even after annealing for long periods at high temperatures. These results indicate that cryogenic mechanical alloying is an attractive method of producing intimate blends of immiscible polymers that can, depending on interchain reaction, retain their nanoscale morphology.

11:45 AM FF6.10/E6.10
STRUCTURE EVOLUTION DURING POLYMER DEWETTING AND DEMIXING. Manfred Schrenk1,2, Peter Mueller-Buschbaum1, Jochen Gutmann1, Institut fuer Polymerforschung Dresden e.V., Dresden, GERMANY; Technical University, Grazing, GERMANY. 1Max-Planck-Institut fuer Polymerforschung, Mainz, GERMANY.

Polymer thin films on a solid substrate can be unstable and then show the tendency depending on film thickness and temperature to dewet the substrate. In a polymer blend of incompatible components the dewetting is in competition with surface and interface segregation effects, and lateral phase separation will generally occur. The phenomenon can be used to generate nanostructures, where regularly spaced droplets of different materials co-exist. Structures are investigated by scattering techniques as well as by direct imaging techniques, which are shown to be complementary. By Fourier transform of a scanning force microscope image a power density pattern is obtained, which bears a prominent length scale. This length can be recognized. Scattering techniques on the other hand also provide information from the interior of the sample, where phase separation may have taken place. A wide range of structured surfaces and different roughness of the surface of the thin films can be formed.
SESSION FF7/D7: JOINT SESSION
MECHANICAL ASPECTS OF SOFT BIOMATERIAL INTERFACES
Chairs: Samuel I. Stupp and Kenneth R. Shull
Wednesday Afternoon, April 26, 2000
Metropolitan I (Argent)

1:30 P.M. *FF7.1/D7.1
BIOADHESIVE POLYMER FORMULATIONS THAT PROLONG DRUG DELIVERY ACROSS MUCOSAL SURFACES.
Ali R. Hoffman, Chad Brown, Masashi Nakamura, Guchun Chen, and Yoshi Hashi, Dept. of Bioengineering, University of Washington, Seattle, WA; Wayne Gombotz, Dean Pittie, Lotte Kreigard and James Mansur, Immunex Corp, Seattle, WA; Michael Roberts and Milton Harris, Sherwood Polymers, Huntsville, AL.

Bioadhesive polymers are often added to drug formulations in order to prolong the residence time on mucosal surfaces such as the eye, the nose or the intestines. However, this does not necessarily lead to prolonged drug release from such formulations, since the drug may still be released too rapidly as the formulation swells and dissociates. We have designed a family of polymeric formulations that combine bioadhesive polymers with additives or conjugates that cause gelation of the formulation. These formulations should be in the form of viscous gels at body temperatures, and should also be bioadhesive, leading to extended residence times on mucosal surfaces, as well as to retarded diffusion of drug and prolonged duration of drug release. The synthesis, properties, drug loading and in vitro delivery profiles of several of these hybrid carrier systems will be described and discussed.

2:00 P.M. FF7.2/D7.2
THE INFLUENCE OF INTERFACIAL MECHANICAL BEHAVIOUR UPON DEFORMATION AND FRACTURE OF COMPOSITE POLYMER GELS. J.P. Pitcher, V. N Normand, S.J. Pomfret, D. Ferdinando and W.J. Frith, Univelser Research, Colworth Laboratory, Sharnbrook, Bedfordshire, UNITED KINGDOM.

The large deformation mechanical behaviour of mixed biopolymer gel compositions, which are potential structuring additives for foods, has been examined in both tension and compression. Composite gels were fabricated by mixing a high polymer solution with a low polymer solution, followed by gelation, which results in discrete ‘ Included particles’ that are contained within a ‘continuous’ matrix phase. This structure can also be inverted by reversing the volume fractions of the respective phases. Two systems were investigated, gelatin/maltodextrin and gelatin/agarose. The mechanical response of these materials was primarily determined by the individual constituent behaviour and the interface fracture resistance. For the gelatin/maltodextrin system, interfacial delamination was observed, which resulted in a pseudo- yielding response. A simple elastomer model was used to indirectly calculate an approximate interfacial fracture energy of ~0.25 J m^-2 for this system. There was good agreement between this value and that obtained directly by peel testing, where a gelatin layer was cast directly onto maltodextrin and subsequently peeled off. Conversely, delamination was not observed for the phase-segregated gelatin/agarose system. Here, it was possible to conduct peel tests with a gelatin layer cast onto agarose. The fracture energy obtained in this case was approximately 30 times greater than that for the gelatin/maltodextrin system. This dramatic increase in interfacial fracture energy for this system, relative to gelatin/maltodextrin, is believed to result in the lack of observed interfacial delaminating noted for the actual composite structure.

2:15 P.M. FF7.3/D7.3
INTERFACIAL ADHESION OF BIOPOLYMER GELS MEASURED USING THE PEEL TEST. S.J. Pomfret, K.P. Pitcher, V. N Normand, W.J. Frith, Univelser Research Colworth, Bedford, UNITED KINGDOM.

The adhesion between layers of biopolymer gel has been measured using the 90 degree peel test. Gel bilayers, including gelatin, agarose, maltodextrin and kappa-carragenan, were prepared in several ways, single or double layer, and peel tested. The force required to separate these layers was measured and the results allow the interfacial adhesion to be compared with the function of gel composition, preparation method used, and layer contact time. The expression that describes the force required to peel two layers apart includes terms to account for alternative methods of energy dissipation, such as peel arm extension, that occur in addition to interfacial fracture. Preliminary work has been done to evaluate these terms and hence allow determination of the interfacial fracture energy of the systems involved. The value of approximately 0.23 J m^-2 for the interfacial fracture energy of a maltodextrin/ gelatin in interface, formed by casting gelatin on maltodextrin, is in good agreement with values indirectly observed from particle/matrix debonding experiments performed on composite systems.

3:30 P.M. FF7.4/D7.4
PH-DEPENDENT SWELLING BEHAVIOR OF HYDROPHILIC GELS WITH POLYACRYLICIDE. Xiaomei He, Jiu Xie, Nuo Lei, Fuxing Lao, Linsheng Yang and Xingtui. South China University of Technology, College of Food Engineering & Biotechnology, Guangzhou, PR CHINA.

It was known that charged polymeric networks have been recognized as useful matrices for delivering drugs because of their volume change in response to pH variation. However, most of the synthetic polymers gels so far studied have poor bio-intermiscibility and probably have side effects when they are applied to human body as a biomaterial. On the other hand, polyanhydride, which is natural polymer, has good bio-intermiscibility. Therefore, the gel with polyacrylicide can be expected as a novel material like to biopolymer gel. In this study, the graft of polyanhydride and acryloinitrile-Starch-PAN gel were prepared and also, the swelling behavior of the gel with poly-anhydride in an aqueous with different pH values were discussed. The response of the graft gels was investigated by the pH-dependence of weight swelling ratio. In a lower pH regionpH=4, the swelling ratio of the graft gel group in starch: AN 1: 6; molar ratio was almost constant. In a pH range above pH=4, the swelling ratio increased strikingly with pH up to pH=6.0, and showed a maximum at pH=7.0. Swelling and deswelling of the graft gel could be reversibly repeated many times by switching the pH values of 4.0 and 7.0. Also, experimental data indicated that the deswelling and swelling behavior was sharp and quick in the stage and then became slow in the late stage. This is due to different mechanisms during the overall process of both deswelling or swelling. Also, the discussion of the aggregation structure - pH responsive property relationships of the graft gel with polyanhydride will be presented.

3:15 P.M. FF7.5/D7.5
ADHESION OF INJECTABLE SEMI-INTERPENETRATING POLYMER NETWORKS. Birgitta A. Self, Kevin E. Roberts, Northwestern University, Department of Biological Materials and Biomedical Engineering, Chicago, IL; Elizabeth Maglione, Kenneth R. Shull, Northwestern University, Department of Materials Science and Engineering, Evanston, IL.

Neither polymer scaffolds nor tissue-engineered cartilage adheres to the native tissue lining cartilage defects which decreases the likelihood that integration will occur. Previously, we developed injectable poly[N-isopropylacrylamide-co-acrylic acid] [P[NIPAm-co-AAc]] hydrogels that supported bovine articular chondrocyte viability and promoted the formation of cartilage-like tissue in vitro. The aim of our current work was to develop injectable semi-interpenetrating networks (semi-IPNs) comprised of P[NIPAm-co-AAc] hydrogels and linear peptide-functionalized P[AAc] chains containing sequences that adhere to the extracellular matrix of articular cartilage. The primary objective of this study was to determine the effects of synthesis conditions on the material properties of the semi-IPN. The solvent, the molar ratio of AAc:NIPAm in the hydrogel, and the molecular weight of the P[AAc] chains were varied, and the injectability, the volume change when heated to 37°C, and the lower critical solution condition (LCST) of the semi-IPNs were determined. P[NIPAm-co-AAc] hydrogels served as control. The semi-IPNs demonstrated significantly smaller volume changes, as compared to P[NIPAm-co-AAc] hydrogels, due to the P[AAc] chains. However, the P[AAc] chains did not significantly affect the LCST. The molecular weight of the chains affected the injectability of the semi-IPNs, as matrices with higher molecular weight chains were more difficult to inject. Finally, the solvent and the molar ratio of AAc:NIPAm significantly affected the LCST and volume change of the semi-IPNs. To assess adhesive properties of the matrices, nanoscale adhesion analyses were performed on top x (Nanopore, Nanosurf) layers of a semi-IPN using a custom hemispherical glass indenter. We observed a time-dependent increase in adhesion energy/elastic modulus as a function of displacement, consistent with data reported previously for a model system. These results suggest a new methodology to study the effects of semi-IPN formulation and peptide sequence on adhesion to cartilage tissue. These semi-IPNs may be useful in cartilage regeneration applications.

3:30 P.M. FF7.6/D7.6
ADHESION OF PRESSURE SENSITIVE ADDITIVES WITH APPLICATIONS IN TRANSDERMAL DRUG DELIVERY. Mary B. Tash and Reinhold H. Dussaud, Dept. of Materials Science and Engineering, Stanford Univ, Stanford, CA.
The growing use of transdermal devices for drug delivery, as well as the development of increasingly complex and novel patch designs, necessitates an understanding of the adhesion occurring between the device and the soft dermal layer. Pressure sensitive adhesives (PSAs) are used as the adhesive in this system due to their desirable properties of good initial adhesion and long-term adhesion, clean removability, and skin and drug compatibility. In addition, their highly viscoelastic properties are necessary prerequisites for attachment to soft tissue.

However, the adhesion of PSAs is not well understood with almost no research having been devoted to this area. Consequently, this study utilizes a mechanics approach to quantify the adhesion properties of representative PSAs. Adhesion of PSAs is accomplished by cavitation in the PSA and de-formation of an extensive cohesive zone. The presence of such large-scale bridging provides significant energy dissipation and increased resistance to delamination. The strain energy release rate (G) during delamination of a cantilever-beam sample, containing a crack of 0.1 mm, was measured in a thin layer of both PSA adhesives. This method was used to determine the adhesion of the PSA. The analysis accounts for both the work of adhesion as well as the viscoelastic constitutive behavior of the soft viscoelastic adhesive layer. Effects of adhesive chemistry, layer thickness, and strain rate will be discussed.

3:45 PM FF7.7/DD7.7

EFFECT OF PLASMA TREATMENT ON THE ADHESION OF AN ELECTROLESS SILVER FILM ON A BIOMEDICAL POLYURETHANE

Joy E. Gray, P.R. Norton, K. Krüger, Dept. of Chemistry, Univ. of Western Ontario, London, Ontario, CANADA.

Bacterial growth on medical implants and devices is a common source of infection. There is great interest in the surface modification of polymeric materials to decrease infection rates without altering properties which affect their function. One possibility is to coat the material with a well known antibacterial agent such as silver. The adhesive force deposited on a biomedical polyurethane using a conventional electrodeless plating technique has been studied. Air plasma treatment of the polyurethane surface prior to electrodeless plating results in exclusive chemical modification of the surface and has shown to dramatically improve silver adhesion. X-ray photoelectron spectroscopy indicates an increase in oxygen functionalities at the sample surface. Contact angle goniometry shows a significant increase in wettability. The absence of surface roughening or alteration is confirmed by surface force microscopy. The improved adhesion of the silver film following plasma treatment has been demonstrated using a standard tape test. Rutherford back-scattering spectrometry measurements show little change in the amount of silver on a plasma modified polyurethane after the tape test. The tape test results in almost complete removal of the silver from an unmodified polyurethane surface. Atomic force microscopy has been used to study the structure of the silver films produced. An unmodified polyurethane surface shows silver in loosely bound clusters while the plasma modified polyurethane film results in complete silver coverage in a uniform film. This work demonstrates the importance of chemical surface modification in the role of metal/polymer adhesion.

4:00 PM FF7.8/DD7.8

ADHESION AND MICROTRIBOLOGY OF POLYETHYLENE GLYCOL COVERED SILICA SURFACES. Norma A. Akerström, Thomas A. Kubi, Jacob J. Shinar, Department of Materials Science, Stanford University, University of California, Dept of Chemical Engineering and Dept of Materials, Sint a Barbara, CA.

A thin layer of polyethylene glycol (PEG) attached to a surface resist protein adhesion and biological attack. We have developed a direct method for chemically grafting low molecular weight PEG onto silica coated surfaces. The silica films are produced by plasma enhanced chemical vapor deposition (PECVD) and hydrolyzed by exposure to water plasma. The end alcohol group of the PEG chain reacts with the silanol group on the silica surfaces to form an ether linkage, (Si-O-C). The adhesion and tribological properties of these surfaces were determined using an Atomic Force Microscope (AFM) and friction device and pin-on-disc machine. The measurements were conducted in dry air, 100% relative humidity and in bulk water. The presence or absence of water alters the frictional behavior from smooth sliding to stick-slip motion. We compared and discussed the differences between the friction, wear and lubrication properties of symmetric surfaces of PECVD deposited silica, hydrolyzed silica and PEG coated surfaces. Deposited silica surfaces have the highest friction and least resistance to wear. On the other hand, with PEG-covered silica surfaces the friction force dramatically increases with sliding velocity indicating possible "shear thickening" behavior under confined conditions.

4:15 PM FF7.9/DD7.9

NANOINDENTATION EXPERIMENTS TO PROBE THE SURFACE MECHANICAL PROPERTIES OF PLASMA TREATED POLYETHYLENES. C.M. Klapperich, K. Konomopoulos, Department of Mechanical Engineering, Univ of California, Berkeley, CA and L. Pruitt, Department of Mechanical and Bioengineering, Univ of California, Berkeley, CA.

Low-temperature plasma treatments have recently emerged as a popular method for surface modification of polymers for biomedical and load bearing applications. These surface treatments have been shown to affect the surface chemistry of the material. Crosslinking by plasma treatment is also possible and can result in enhanced mechanical properties of the polymer surface. Since the plasma treatment only modifies the surface to a depth of a few microns, it is not possible to use traditional bulk tests to evaluate the mechanical properties. In order to characterize the surface mechanical properties, nano- and micro-mechanical tests were performed with a conventional atomic force microscope modified with a force-displacement transducer that utilizes a diamond tip to apply nano- and micro-Newton forces to localized regions of the polymer surface. The elastic modulus hardness was determined by analyzing the data from these experiments using the compliance method. Since the indentation depths achievable are on the order of hundreds of nanometers for soft materials, this test method allows probing of the mechanical properties of the treated surface layer in energetically treated or mechanically altered polymers. Polyethylene was chosen as the material for this study because of its clinical and industrial importance. Further, polyethylene can be produced with controlled morphology and molecular properties. This control provides a means for assessing the importance of these variables on both the surface properties and response to plasma treatment.

4:30 PM FF7.10/DD7.10

STRENGTH AND TOUGHNESS OF AN ORGANICALLY REINFORCED CARBONATED APATITE BONE MINERAL SUBSTITUTE. Victoria C. Jeong, Reinhild R. Drexler, Stanford University, Dept of Materials Science and Engineering, Stanford, CA.

Carbonated apatite materials resemble the mineral phase of bone highly received considerable attention for biomedical applications. When formed at physiological temperature, they present significant potential for rapid bone repair, fracture fixation, and augmentation of load bearing hardware. To date, the strength and resistance to fracture of such apatites have been extremely low. This study investigates strategies to enhance the mechanical properties of a carbonated apatite bone cement, utilizing the addition of soft biological organic phases such as albumin, fet bone serum, collagen, and gelatin. The distribution of phases and the interface between the added phase and the apatite are characterized. The addition of soft organic phases is shown to have a marked impact on strength, reliability, and toughness of the bone mineral substitute. Microstructural examination of the inorganic-organic composite materials reveals a number of toughening mechanisms. Most significant is the bridging of cracks in the apatite by the organic phase. Micromechanical models have been developed to account for strengthening and toughening effects. Implications for the integrity and reliability behavior of such synthetic bone mineral substitutes in load bearing applications are considered.

SESSION FF8: POLYMER COMPOSITES AND ADHESION

Chair: Roman Novak, University of the技术, Hradec Kralove.

8:30 AM FF8.1

INVESTIGATION OF PRESSURE SENSITIVE ADHESIVES STRUCTURE THROUGH LATEX BLENDING. Peter Court, Christophe Verge, Christian Lauriehze, Karine Loyer, CERDATO, Elf Atomech, Seniguy, FRANCE, Ludwik Leibler, UMR167, CNRS Elf Atomech, Levallois, FRANCE.

Waterborne pressure sensitive adhesives (PSA) are widely used to bond together different materials. Typical examples are adhesives in labels, foils or clothing. The PSAs are often used for spreading and drying a polymer Ink dispersion. It is key to ensure that the resulting film is not only sticky, but also presents a significant creep and shear resistance. Fine tuning of viscoelastic properties of the polymer is crucial. An attractive way to
enhance the creep resistance without adversely affecting film
stickness is to introduce in the latex, monomers able to
develop specific interactions with the substrate, thus yielding to
a physically cross-linked network. Here we show how the introduction of ureido acrylic
monomers in the latex changes the adhesive and cohesive properties of latex films. We use specific rheological measurements on thin films to
corroborate the presence of viscoelastic properties of temporarily
cross-linked polymers on adhesion strength and shear resistance of
adhesive bonds. We show the importance of interfacial phenomena
taking place at more microscopic scales namely at the latex surfaces.
These effects influence the outcome of the film formation process itself: the chains initially in the latex particles must
interdiffuse, at least partially, to create a film with significant
cohesion. In order to reach new insights on the mechanisms involved,
we have studied blends of model latexes having the same particles size and
the same glass transition temperature set far below room
temperature to allow chain diffusion. The blends investigated are
constituted of a cohesive latex and a latex bearing controlled amounts of an ureido acrylic monomer. We find that even for low
concentrations of later latexes the static shear resistance increases
meaning that significant chain interdiffusion is possible even for
polymers able to form physical cross-links.

9:00 AM FFS.2
ADHESION OF TRIBLOCK COPOLYMER-BASED THERMO-
REVERSIBLE GELS AND PRESSURE SENSITIVE ADHESIVES.
Kenneth R. Shull, Alfred J. Crosby, Cynthia M. Flomigan,
Northwestern University, Department of Materials Science and
Engineering, Evanston, IL.

Triblock copolymers with poly(methyl methacrylate) (PMMA) end blocks and a poly(n-butyl acrylate) (PnBA) middle block have been synthesized as model thermoreversible gels and pressure sensitive adhesives. These materials have a variety of useful properties at temperatures above 60 degrees C to form freely flowing liquids. At lower temperatures the PMMA endblocks associate so that the solutions form ideally elastic solids. In our case the solvent is 2,4,6-trimethylpiperidine. The solutions are heated to 120 degrees C, and the gels are stable and retain their cohesive properties after being subjected to a large deformation. The adhesion properties of the gels are dominated by the PMMA endblocks. Very little gelation hysteresis is observed in this case, although we do observe hysteresis associated with the frictional response of the gels. Very strongly adhering gels: By heating the gels in contact with a PMMA surface, it is possible to bond the gels to a surface. Development of adhesion as the PMMA blocks penetrate into the PMMA substrate can be probed in this case. The cohesive strengths of the gels are found to be substantially greater than their elastic moduli, so that these materials can be reversibly extended to very high strains. These properties have enabled us to probe the origins of
elastic shape instabilities that play a very important role in the
behavior of thin adhesive layers. 3) Dried gels model pressure sensitive adhesives, improving the solvent at low temperatures, the underlying structure of the gel is preserved, giving a thin elastic layer with excellent performance as a pressure sensitive adhesive.

9:15 AM FFS.3
SIMULATION OF INTERFACIAL FRACTURE IN HIGHLY
CROSSLINKED ADHESIVES. Mark J. Stevens, Sandia National Laboratories, Albuquerque, NM.

The fracture of highly-crosslinked networks is investigated by
molecular dynamics simulations. The sequence of molecular structural
deformations that lead to failure are determined, and the connectivity
is found to strongly control the stress-strain response and failure
modes. A set of model, ordered networks are constructed to
manipulate the deformation sequence to alter the fracture behavior.
Compared to random, dynamically formed networks, these ordered
networks can be made to have either much larger or smaller failure
stresses and strains. By varying the number of bonds to the surface,
the failure mode can be controlled to be either adhesive or cohesive.
The ideal strength can be derived from the fracture of functionalized self-assembled monolayers (SAMs). Unlike the
random networks, the failure stress of an ordered network is close to
the ideal stress equal to breaking all bonds to the substrate. The strength for ordered networks (e.g., etched Si and nylon) is much higher than this ideal value for two main reasons. The number of interfacial bonds for an adhesive is much less than for two SAMs. Thus, the ideal interfacial fracture stress of the network is in fact much smaller than for the SAMs. In all the binary SAMs this argument holds simultaneously, but in the adhesive sequential bond breaking significantly reduces the instantaneous fracture stress.

9:30 AM FFS.4
SULFONATED WHOLW AROMATIC PROTON EXCHANGE
MEMBRANE FOR FUEL CELLS: ADHESION ISSUES.
J. E. McGrath, H. K. Nehrke, F. Wang, S. Wang, N. G'mund, W.
Department of Chemistry, Blacksburg, VA; R. Formato and R. Kruse,
Foster Miller, Waltham, MA.

Currently, the most important proton exchange membrane (PEM) for
fuel cells is based on the sulfonated and perfluorinated copolymer
provided by DuPont under the trade name, Nafton. Although this is an
excellent material in terms of many of the requirements, it is
considered a new insight that limited as elevated temperatures needed
to limit the base reaction of carbon monoxide with the platinum catalyst.
In addition to serving as a proton exchange membrane, the
polyelectrolyte materials must also interact with the catalyst
dispersed in carbon black and become part of the membrane-electrode assembly [MEA]. New PEMs will require further consideration of
adhesion issues in the membrane-electrode assembly. Our laboratory
has investigated wholly aromatic poly(arylene ether) s, poly(aryl
ether sulfones), poly(arylene phosphine oxides), and specialty polyimides as
candidate PEMs. This presentation will describe the fundamental
characteristics of several of these new classes of materials, which are
promising as new hydrolytic and oxidatively stable proton exchange
membranes. The issues of adhesion and compatibility will be
considered.

10:15 AM *FFS.5
INTERFACIAL WIDTH AND FRACTURE TOUGHNESS OF
INTERFACES BETWEEN GLASSY POLYMERS. Ralf
Schnell, Akzo Nobel Faer, Oberburg, GERMANY; Cornelio Lorenz
Manfred Strauss, Max-Planck-Institut für Polymerforschung, Mainz,
GERMANY; Constantino Creton, Laboratoire PCSM, ESPCI, Paris,
FRANCE.

We have investigated the relationship between the width η of
interfaces between glassy monodisperse homopolymers, as measured
by neutron reflectivity, and their fracture toughness characterized
by the critical energy release rate Gc in a double-cantilever beam test.
For a family of polymers with nearly identical crazing stresses and
with molecular weights much larger than the average molecular weight
between entanglements, we found a unique relationship between η and
Gc. The fracture toughness increased with interfacial width following
three regimes. For narrow interfacial widths (regime I), Gc was small
and nearly independent of interfacial width, for intermediate values of η (regime II), a sharp increase in Gc was observed due presumably to the activation of plastic deformation mechanisms at the interface. Finally for thicker interfaces Gc was found to be again nearly independent of the width of the interfacial.

10:45 AM FFS.6
ADHESION ENHANCEMENT VIA INTERFACIAL ENTANGL-
MENTS. Phillip J. Cole and Christopher W. McDonald, University of
Minnesota, Department of Chemical Engineering and Materials
Science, Minneapolis, MN.

Considerable research has focused on strengthening immiscible
polymer-polymer interfaces through the addition of an enhancement
molecule, such as a block copolymer. It may be possible to
dynamically alter the interfacial interactions through changes in the
properties of the homopolymers themselves, even eliminating the need for an enhancement species. This would be done by
maximizing interfacial entanglements, which are largely responsible
for the interfacial strength. In semicrystalline polymers, an additional
improvement could also be achieved by end-anchoring an interfacially
tangled chain in the crystalline regions of the homopolymer(s). In order
to study the role of interfacial entanglements, and the
additional variable of crystallinity, a series of rod propagation tests
were performed on compression-molded, bilayer structures. These
structures included glassy-glassy, glassy-semicrystalline, and
semicrystalline-semicrystalline with varying interfacial widths.
Specifically, the polymer pairs included polystyrene-poly(methyl
methacrylate), polystyrene-polyethylene, polystyrene-polypropylene,
and others. In addition, commercial available polyethylene
systems which differ with different linear chains and broad molecular weights were used, giving a varying amount of non-crystallizable material at the interface. This
permits an assessment of the importance of crystalline-anchored,
interfacially entangled chains. Initial crack propagation results have confirmed our expectations in the compression-molded samples, demonstrating the importance of interfacial interactions. It is also important to consider common industrial processing methods. Specifically, contact time, interface roughness, and molecular orientation are altered significantly when compression-molded samples are replaced with multilayer coextruded samples. However, initial crack propagation test on multilayer coextruded samples demonstrate similar trends in interface strength as compared with the compression-molded samples. This suggests that the importance of selecting polymer components with appropriately tailored properties cannot be overlooked.

11:00 AM FPS.7 THE EFFECT OF SURFACE CONTAMINATION ON ADHESIVE FORCES AS MEASURED BY CONTACT MECHANICS.
John A. Emerson, Gregory V. Miller, Christopher R. Sorensen, Sandia National Laboratories, Albuquerque, NM, Raymond A. Pearson, Lehigh University, Bethlehem, PA.

The contact adhesive forces between two surfaces, one being a soft hemisphere and the other being a hard plate, can readily be determined by applying an external compressive load to make the two surfaces and subsequently applying a tensile load to peel the surfaces apart. The contact region is assumed to be the superposition of elastic Hertzian pressure and of the attractive surface forces that act only over the contact area. What are the effects of the degree of surface contamination on adhesive forces? Clean aluminum surfaces of varying roughness were coated with hexadecane as a controlled contaminant. Values of the normal load of adhesion (Wa) were derived from the contact mechanics, via the JKR model, using a model silicone network for the elastomeric contact surface. Variations in the thickness of the hexadecane were determined by ellipsometry. As the film thickness of hexadecane increases, Wa also increases. It was found that the Wa plane is the film thickness increases. However, for small amounts of contamination, there is no decrease in Wa.

This work supported by U.S. DOE Contract DE-AC04-94AL85000.

11:15 AM *FPS.8 THE ROLE OF FIBER/MATRIX INTERFACE AS A STRESS TRANSFER MEDIUM IN POLYMERIC COMPOSITES.
Costas Galiotsakis, Institute of Chemical Engineering and High Temperature Chemical Processes, Foundation of Research and Technology-Hellas, Patras, GREECE.

It is now well established that the tensile strength of a fiber reinforced material is determined by the stress distribution of the embedded fibers and the local stress distribution caused by fiber fracture. The stress build-up in the broken fiber, as well as the magnitude and local stress distribution in the intact fibers are governed by the material properties and, most importantly, by the strength and toughness of the fiber/matrix interface. Practical experience has long guided composite manufacturers and users to produce tough composites by enhancing the interface in such a way so as to balance the beneficial reduction of stress concentration with the resulting detrimental increase of the transfer length. The complexity of the mechanics of fiber failure and the redistribution of stress originated with a consideration of the important role of both fiber and interfacial strength in the modelling of the strength of fibrous composites a very difficult problem. In this paper the interfacial characteristics such as fiber surface treatment, fiber sizing, as well as fiber type/modulus upon the fracture characteristics of high carbon fiber/epoxy resin composites were investigated. Three different coupon geometries were employed namely single fiber model composites, 2D microcomposites and full composite tensile coupons and tabs. In all cases, the point-by-point stress in the fiber was measured with the technique of remote laser Raman microscopy (ReLAM). The composite specimens were loaded incrementally in tension and the transfer profiles emanating from fiber breaks, were closely monitored. The stress or strain along individual fibers at different levels of applied load has been monitored in an attempt to measure the transfer lengths in all three geometries and the stress concentration factors for the different types of composite used in full composites. The corresponding shear stress distributions were obtained through the stress transfer profiles with the use of a simple balance-of-forces equation. The redistribution of stress in fibers adjacent to a crack, as well as in the 2D and full composite geometries were determined as a function of distance from the fiber fracture.

11:45 AM FPS.9 MEASURING INTERFACE STRENGTH IN SINGLE FIBER COMPOSITES: THE EFFECT OF STRESS CONCENTRATIONS.
Gale Holmes and Richard Peterson, National Institute of Standards and Technology, Gaithersburg, MD.

Fiber-matrix interface strength is known to be a critical factor in controlling the long-term performance of structural composites. This parameter is often measured by the single-fiber fragmentation test (SFT). In the SFT, a single fiber is aligned along the axis of a dog bone geometry and embedded in a resin having an engineering failure that is typically 3 to 5 times higher than the fiber. The matrix is strained until the resulting fiber fragments are too short for a sufficient load to be transmitted into them to cause additional failure. This point is termed the composite strength. The fiber composite strength is determined by incorporating the average of the measured fragment lengths into a micro-mechanics model. Recent laboratory results in this laboratory have shown that the current models do not accurately account for the nonlinear failure behavior exhibited by the matrix during fiber fragmentation. As a result, a nonlinear model was developed (Holmes et al. 1999). Theoretically, this new model indicates that the interface strength is independent of the testing rate. Experimentally, it has been shown that the final fragment length distribution in some systems is dependent on the testing rate (Holmes et al. 1999). However, data analysis using the new rate model indicates that the composite strength is promoted by the presence of high stress concentrations at the end of the fiber fragments. From the model, these stress concentrations were found to exist at very low strain values. Experimentally, the fragment length distributions obtained from specimens tested by different testing rates were found to be significantly different at strain values well below the saturation strain. These results are consistent with the research of Johnson and Galatik (1998) and finite element calculations performed by Carmona et al. (1998). However, the current model indicates that stress concentrations can promote failure of the fiber-matrix interface on the molecular level. Our results support this conclusion. In addition, our research results suggest that altering the SFT testing rate will lower the magnitude of these stress concentrations and minimize failure of the fiber-matrix interface.

SESSION FF9: POLYMER SURFACES AND SURFACE MODIFICATION

Chair: Gregory S. Ferguson and Costantino Creton
Thursday Afternoon, April 27, 2010
Metropolitan I (Argent)

1:30 PM *FF9.1 STRUCTURE AND RHEOLOGY OF INTERCALATED POLY- STYRENE- POLYISOPRENE INTERBULKY COMPOSITES. Rajaman Krishnamoorti, Jinxiang Ren, University of Houston, Department of Chemical Engineering, Houston, TX.

The structure and viscoelastic properties of a series of polystyrene-polyisoprene block copolymer (PSPI) nanocomposites with varying amounts of diethylidicyclammonium modified montmorillonite (2C18M) are studied. The layered structure of the nanocomposites, with a clay height of 2.9±0.1 nm and volume of 6% of the silica loading, is verified by X-Ray diffraction. The melt rheology of PSPI-2C18M nanocomposites is systematically studied in terms of linear oscillatory shear measurement, linear and non-linear strain measurement, steady shear rate response under constant strain sweeps. It is found that the nanocomposites display unique rheological properties that depend on the amount of clay incorporated. The linear viscoelastic dynamic moduli are found to be quantitatively consistent with the linear extrapolation of non-linear steady-shear strain response in the pure polymer exhibits liquid-like characteristics, a nanocomposite with 6.7 wt% silica exhibits pseudo-solid like behavior. The unique rheology is a consequence of the mesoscopic and nanoscopic structure of these nanocomposites.

2:00 PM *FF9.2 MODELLING SURFACE AND INTERFACE PROPERTIES OF LINEAR AMORPHOUS POLYMERS. Sylvain Goulon, Jocelyne Galy, Jean-François Gerard, Laboratory Matières Macromoléculaires, INSA Lyon, Villeurbanne, FRANCE, René Fichter, LMPB, Université C. Bernard, Villeurbanne, FRANCE, Jean-Louis Buzer, Département des Matières, Université C. Bernard, Villeurbanne, FRANCE.

Much attention has recently been focused on the observation and characterization of polymer surfaces at a molecular level. Experimental data concerning surfaces-Tg and mobility, chain orientation, or end-group segregation are now well documented for reference polymers such as PS and PMMA. The interfacial properties, i.e. interfacial tension and interfacial thickness of incompatible blends of these polymers are also well-known experimentally. The aim of this work is to compare such experimental data with the results obtained by two different methods which are based on the calculation of interfacial tension interactions. Polystyrene (PS) and poly(methylmethacrylate) (PMMA) were selected as references and the methodology was applied to high-Tg polymers such as PPE, PEI, PES, epoxy prepolymer, and their binary mixtures. The first approach relies on PVT (Pressure-Volume-Temperature) experiments. Specific volume vs. temperature
and pressure measurements done a dilatometric apparatus are fitted with various theoretical equations of state (based on Flory-Groot-Wrij or Prigogine model) to extract the cohesive energy density of the CED, as well as surface tension. The surface properties of polymer blends, i.e., surface tension, interfacial tension, and interface width, were investigated. In a second approach, molecular dynamics simulations have been carried out at the atomistic level on amorphous polymer cells using the software package MSA Cerius2 & InsightII with accurate force-field designed especially for polymers. Both bulk and surface cells were simulated. The simulation of thin films allows to observe thin film properties and the increase of surface mobility. The comparison between bulk and surface simulations leads to the surface tension of polymers.

2:15 PM *F90.3
SWITCHING OF SURFACE PROPERTIES WITH POLYMER BRUSHES. Mischa Stegem 1,2, Sergiy Minke 3,5, Alexander Sidorenko 3,5, 1Institute fuer Polymere Institut Dresden e.V., Dresden, GERMANY, 2Max-Planck-Institut fuer Polymere Forschung, Mainz, GERMANY, 3Physical Chemistry Institute, National Academy of Sciences, Lviv, UKRAINE.

By the grafting of a polymer layer to a solid substrate the surface properties may be changed. Using mixed layers of chemically distinctly different materials quite interesting surface properties are obtained and a reversible switching between different surface states becomes possible. An example are grafted layers of polystyrene and poly(2-vinyl pyridine), where a switching between a hydrophobic and hydrophilic behaviour is possible. This is achieved by a structural rearrangement of the brush-like surface layer, where either one or the other component is the outermost layer. The surface changes induced by photoelectron spectroscopy, scanning force microscopy, contact angle measurements and optical techniques. Potential applications of reversibly switchable and environmental adjustable surface layers in the area of materials science and biocompatibility are discussed.

3:15 PM *F90.4
ELECTROGRAPHING OF CONDUCTING POLYMERS ONTO ITO SURFACES. David Lalage, Christine Jerome, Robert Jerome, Center for Education and Research on Micromolecules, University of Liege, Liege, BELGIUM; Viktor Gensic, Roberto Lazzaroni, Service des Matériaux Nouveaux, University of Mons-Hainaut, Mons, BELGIUM.

Polythiophene derivatives are frequently used in emitting layers in LEDs. In such devices, one of the electrodes must be transparent, which explains that plates of glass or transparent polymer are coated by a thin layer of ITO and used as substrates. The improvement of the interfacial adhesion of the conducting polymer to these substrates remains however a challenge. A possible strategy for tackling the problem could be found in the extension of the electrochemical technique of polymer grafting onto metals (Re, Ni) to ITO glasses (1-2). The cathodic electrografting of the acrylate of thiophene will be discussed followed by the anodic polymerization of thiophene. The electroactivity of the organic film will be analyzed and the dependence of the film thickness on the electrochemistry conditions, as well as a series of properties of the electrografted film will be compared to polythiophene films prepared by traditional anodic electro-polymerization, such as electrophotography, adhesion, optical and electroluminescence properties.

3:45 PM F90.5
SURFACE MODIFICATION OF POLY(ALKYDARYLPHOSPHAZENE) THIN FILMS. John V. St. John, Patti Wissman-Neelso, Southern Methodist University, Dallas, TX.

Poly(arylarylphosphazenes) are a unique class of inorganic polymers. The alternating -(PR2-N=)- backbone provides for stable bulk properties of the material while allowing a wide range of functionalization of the aryl groups. The use of substitution reactions have allowed for attainment of organofunctional groups that include alcohols, carbonylic acids, ketones, dihalides, thiolates, esters, ferrocene, and a variety of substituted siloxyl groups. This research demonstrates studies of surface modification of poly(arylarylphosphazenes) to enhance the adhesion of the film to the solid substrate. In direct contrast, the surface properties of these films can be tailored to prevent interaction with surfaces. The use of photoresponsive substituents allows the potential for patterned polymer surfaces, which have regions containing different functional groups. This yields the possibility of the film which can be used to assemble ordered arrays of nanostructures which have specificity for different chemical.

4:00 PM F90.6
RADIATION ENHANCED POROSITY AND ROUGHNESS OF BIOMATERIALS. A.L. Evelyn, D. Ha, R.L. Zimmerman, Center for Innovation in Materials, Appalachian State University, Normal, AL, M.G. Rodrigues, University of Sao Paulo, DFM-FCLEP, Ribeirão Preto/SP, BRAZIL, D.H. Polker, D.K. Hensley, Oak Ridge National Laboratory/SMAC, Oak Ridge, TN.

Glassy polymeric carbon (GPC), made from cured phenolic resins, is a sufficiently chemically inert and biocompatible that it is suitable for medical applications, such as heart valves and other prosthetic devices. We have used energetic ion bombardment of the partially and fully cured precursor polymeric resins to enhance biological cell/tissue growth on, and to increase tissue adhesion to, prosthetic devices made from GPC. GPC samples were bombarded with energetic ions ranging from 1 keV to 10 MeV. The surface topography and surface roughness were observed using optical microscopy and atomic force microscopy (AFM). The increased porosity was measured by introducing lithium from a molten LiCl salt into the GPC and using (p,a) nuclear reaction analysis (NRA) to measure the concentration of Li retention in the modified GPC. The NRA measurements of increased core availability were correlated with the observations of increased surface roughness.

4:15 PM F90.7
SURFACE INITIATED POLYMERIZATION FROM GNAS. Hongyong Gao, Thomas A. P. Seece, Institute of Materials Science, University of Connecticut, Storrs, CT.

Polymers layers attached to GaAs wafers were prepared by polymerization from a surface-tethered organometallic catalyst. As an example, thioles with terminal amines were bonded to the surface of a GaAs wafer through the thiol group. The terminal hydroxy groups were shown to be capable of reacting with titanium tetrachloride. The resultant titanium (IV) alkoxide species was able to polymerize the phenyl isocyanate to form a polymer layer on the GaAs surface. This presence of the polyphenylisocyanate product was confirmed using grazing incidence infrared spectroscopy. The terminal hydroxyl group could also be reacted with norbornene carbonyl chloride to give surface bound norbornyl species. After addition of a ruthenium alkylene complex (Grubbs catalyst), the polymerization of norbornene could be catalyzed by the tethered Ru catalyst to form a polynorbornene layer on the surface. Attached polymer layers were characterized by IR, XP, and ellipsometry analysis.

4:30 PM F90.8
SURFACE-ATTACHED POLYMER NETWORKS. Oswaal Pruder, Krystin Miller, Jurgen Rieke, University of Freiburg, Institute for Microsystem Technology (IMTEK), Freiburg, GERMANY.

The modification of surfaces with thin films of polymer networks is of great interest in many fields ranging from the protection of surfaces against corrosion to various biotechnological concepts, e.g., to improve the biocompatibility of implant surfaces. In all cases a firm long-term adhesion of the network structure to the solid support is mandatory otherwise the networks would be detached from the surface. Cleverly the best way to achieve this goal is to covalently attach the network to the substrate. Hence, we were interested in developing synthetic pathways for that purpose. To address several issues connected to this general goal, we established three strategies to form such surface-attached polymer networks either by simultaneous network formation and surface attachment or in subsequent steps. In our contribution we present synthetic details and results of the characterization of the networks with regard to their thickness, strength of adhesion and swelling behavior.

4:45 PM F90.9
MICROCELLULAR POLYMERIC FOAMS PRODUCED IN SUPERCRITICAL CARBON DIOXIDE. Srinivas Siripargara, Yoon Gyu, Joseph R. Boyer, Joseph DeSimone, Richard J. Spontak and Sain A. Khan, Department of Chemical Engineering, North Carolina State University, Raleigh, NC.

Fumed microcellular plastics have received considerable attention in recent years for a myriad of reasons. The goal of replacing solid polymers by microcellular polymers without compromising application-specific functionality is driven by a combination of material savings and waste management. The world-wide banning of chlorofluorocarbons (CFCs) has forever changed the foam industry to explore novel, environmentally benign blowing agents such as supercritical carbon dioxide (scCO2). In addition, scCO2 possesses interesting properties, such as liquid-like densities, which account for its high solvent power, and gas-like viscosities, yielding high rates of diffusion. It has been previously demonstrated that many commodity
thermoplastics can be readily foamed by scCO_2. Most studies reported on microcellular plastics produced in this fashion involve batch foaming. More recently, a continuous extrusion process has been proposed to avoid the lengthy time periods required to saturate the polymer with the blowing agent. These two foaming processes have substantially different tunable operating parameters, in which case a comparative study is necessary to identify and possibly combine the advantages of both processes. We have constructed experimental systems for batch and continuous extrusion processes in scCO_2 with superior process control relative to many comparable systems that are currently employed for microcellular foam generation. Foaming experiments have thus far been conducted using polystyrene and poly(methyl methacrylate) homopolymers as model materials. The morphologies and mechanical properties of microcellular foams prepared by both processes have been analyzed in terms of cell size distribution, foam density and impact strength. These results are quantitatively compared for foams produced at different operating conditions in batch and continuous mode.