Symposium Organizers
Soeren Steudel IMEC
Shelby F. Nelson Eastman Kodak Company
Veit Wagner Jacobs University Bremen
Heiko Thiem Evonik Degussa GmbH
F1: Organic Semiconductor Material
Session Chairs
Monday PM, November 29, 2010
Room 309 (Hynes)
10:00 AM - **F1.1
Designing Solution-processable Materials for Organic Thin-film Transistors.
John Anthony 1
1 , University of Kentucky, Lexington, Kentucky, United States
Show AbstractThe drive for low-temperature processing in organic electronics has hastened the development of new materials that are conveniently processed from solution. Because highly crystalline organic materials are required for high field-effect mobilities, semiconductors must be carefully designed to allow for rapid crystallization during solvent-casting. This talk will focus broadly on our functionalization strategy to yield soluble, highly crystalline material, with detailed case-studies on functionalization studies that improve intermolecular close-contacts, accelerate the rate of crystallization and improve stability of these otherwise reactive aromatic molecules. For instance, the symmetry of the solubilizing groups has a significant impact on lateral and longitudinal shift of the chromophores in the solid state, and this phenomenon can be used to fine-tune crystal packing to yield enhanced mobility. Other desymmetrization of the chromophore leads to severe degradation of the observed transistor performance. Using derivatives substituted on only one end with a variety of functional groups changes the packing dramatically, typically yielding the less-desirable 1-D pi-stacking motif. Desymmetrization by increasing chromophore length leads to reasonable short-range order but signifiant long-range disorder, due to a lack of preferred orientation between adjacent pi-stacked systems. Further increases in chromophore length that re-symmetrize the system restore the desired pi-stacking motifs. However, with such large linearly-fused chromophores, strategies must be developed to stabilize the semiconductor against the most common decomposition pathways.
10:30 AM - F1.2
High Mobility TIPS-Pentacene Field Effect Transistors (FETs) Fabricated Using Solution Shearing.
Gaurav Giri 1 , Eric Verploegen 1 2 , Hector Becerril 3 , Alberto Salleo 4 , Michael Toney 2 , John Anthony 5 , Zhenan Bao 1
1 Chemical Engineering, Stanford University, Stanford, California, United States, 2 Stanford Synchrotron Radiation Lightsource, Stanford University, Stanford, California, United States, 3 Chemistry, Brigham Young University, Rexburg, Idaho, United States, 4 Material Science and Engineering, Stanford University, Stanford, California, United States, 5 Chemistry, University of Kentucky, Lexington, Kentucky, United States
Show AbstractSolution deposition of organic semiconductors (OSC) is a leading contender for producing large-area, inexpensive, and flexible organic electronics. A recently developed solution shearing method (SS) has demonstrated better organic field effect transistor (OFET) performance compared to simple drop casting or spin casting methods. In this method, an organic semiconductor (OSC) solution is sandwiched between two substrates, a non wetting ‘shearing substrate’ and a wetting ‘device substrate’; the latter is heated to a controlled temperature. As the OSC solution is sheared by translating the upper shearing substrate, semiconductor crystallization occurs on the bottom device substrate. Using the well-studied small molecule OSC 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-Pn), SS has achieved a wide range of reproducible morphologies, which results in differing FET performance. SS can be used to vary many deposition conditions, such as OSC concentration, deposition temperature, shearing speed, etc. Certain conditions have yielded remarkable FET performance. The best shearing conditions yield large area films (> 4 cm^2) on which FETs show an average charge carrier mobility of > 2 cm^2/Vs with transistors showing mobilities as high as 4.7 cm^2/Vs, a current On/Off ratio of > 10^6, low hysteresis and a threshold voltage of -10 V. This is the best performance in terms of mobility for TIPS-Pn that has been reported in literature. We quantitatively measure the molecular ordering resulting from SS and how this ordering impacts charge carrier performance, and we investigate the relationship between the morphological anisotropy and anisotropy in the charge carrier transport. Finally, this study also outlines whether SS can impart the same morphological characteristics and increased charge transport performance for other OSCs.
10:45 AM - F1.3
Polymer and Nanoparticle Mediated TIPS-Pentacene Crystallization: Towards Enhanced Performance Consistency in Small-molecule-based Solution Processible Organic Thin-film Transistors.
Zhengran He 1 , William Durant 1 , Kai Xiao 2 , John Anthony 3 , Jihua Chen 2 , Michael Kilbey 2 , Dawen Li 1
1 Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama, United States, 2 Center for Nanophase Materials Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee, United States, 3 Deparment of Chemistry, University of Kentucky, Lexington, Kentucky, United States
Show AbstractOrganic thin-film transistors (OTFTs) with 6,13-bis(triisopropyl-silylethynyl)-pentacene (TIPS-pentacene) active layers have attracted much attention due to their room-temperature, solution-based deposition process and impressively high mobility ( up to 1.8 cm2/V.s).[1] However, OTFTs based on TIPS-pentacene polycrystalline films severely suffer from crystal growth anisotropy, which results in poor performance consistency.[2] In this work, in order to mediate the crystallization of TIPS-pentacene, SiO2 nanoparticles (~20 nm) or polymers are mixed with TIPS-pentacene in solution, and subsequent drop-casting of the blend solutions yields uniform film morphology with enhanced average mobility and significantly reduced performance variation. With a top-contact configuration and without hexamethyldisilazane (HMDS) treatment on substrate, the field-effect mobility from pure TIPS-pentacene films varies dramatically from 0.5 to 5×10−3 cm2/V.s, while TIPS-pentacene blends with 2-10% silicon dioxide nanoparticles consistently demonstrate mobilities of 0.1-0.4 cm2/V.s. In addition, three polymers with different crystallinity and solubility parameters: poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP, solubility parameter δPVH= ~23 [MPa]1/2), poly(α-methyl styrene) (PαMS, δPαMS= 18.8 [MPa]1/2) and polyisobutylene (PiB, δPiB= 15.6 [MPa]1/2) are blended with TIPS-pentacene (δTP= 18-19 [MPa]1/2)[3]. The polarity- and polymer crystallization-driven phase separation in these systems are systematically correlated with device performance, optical microscopy, and X-ray diffraction. Interestingly, PVDF-HFP introduces lateral phase separation in the blend films while the other two polymers resulted in vertical phase separation with TIPS pentacene domains. Unlike the situations in pure TIPS-pentacene transistors, HMDS treatments on gate dielectrics turn out to reduce the device performance in the polymer/TIPS-pentacene system, most likely caused by the modified film/substrate interfacial energies upon polymer addition. Average mobilities of up to 0.2 cm2/V.s are achieved in these polymer/small molecule blend systems with optimized substrate treatment, device configuration and drop-casting conditions.[1] Park, S.K., Jackson, T.N., Anthony, J.E., Mourey, D.A., Appl. Phys. Lett., 91, 063514 (2007)[2] Chen, J., Tee, C.K., Shtein M., Martin D.C., Anthony, J.E., Org. Electron., 10, 696 (2009)[3] Chen, J., Martin D.C., Anthony, J.E., J. Mater. Res., 122, 1701 (2007)
11:00 AM - F1:OMaterial
BREAK
11:30 AM - **F1.4
High-mobility Organic Thin-film Transistors with Improved Shelf-life Stability.
Hagen Klauk 1
1 , Max Planck Institute for Solid State Research, Stuttgart Germany
Show AbstractPentacene is one of the most popular small-molecule semiconductors for organic p-channel thin-film transistors (TFTs), because it provides relatively large field-effect mobilities of about 1 cm2/Vs [1]. However, pentacene is very susceptible to oxidation, so the carrier mobility of pentacene TFTs degrades rapidly when the devices are exposed in air [2]. Recently, a six-ring fused heteroarene, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT), has been synthesized that has a crystal structure and a thin-film morphology very similar to those of pentacene, but which is much less susceptible to oxidation [3]. As a result, the field-effect mobility of DNTT TFTs is as large as that of pentacene TFTs, but the DNTT devices have much better shelf-life stability [3,4]. We have fabricated flexible low-voltage DNTT TFTs that have hole mobilities between 1 and 2 cm2/Vs and on/off current ratios between 107 and 108. Due to the better oxidation resistance, the mobility of the DNTT TFTs degrades much less rapidly compared with pentacene TFTs: While the mobility of the pentacene TFTs decreases by about an order of magnitude within just a few months, the mobility of the DNTT TFTs is still about 70% of its initial value after 8 months of continuous exposure to air. Using a low-temperature shadow-mask process we have also fabricated flexible unipolar ring oscillators based on DNTT TFTs and measured signal propagation delays as low as 11 µsec per stage, which is within a factor of 30 of the fastest organic ring oscillators reported to date [5], despite the more relaxed design rule (10 µm instead of 2 µm) and despite the smaller supply voltage (3 V instead of 10 V). [1] C. Rolin et al., Appl. Phys. Lett., vol. 89, p. 203502 (2006). [2] H. Klauk et al., Adv. Mater., vol. 19, p. 3882 (2007). [3] T. Yamamoto et al., J. Am. Chem. Soc., vol. 129, p. 2224 (2007). [4] U. Zschieschang et al., Adv. Mater., vol. 22, p. 982 (2010). [5] K. Myny et al., Org. Electronics, vol. 11, p. 1176 (2010).
12:00 PM - F1.5
A New Solution-process for High Mobility and Small Variation in Organic TFT Performance via Liquid Crystal Film.
Hiroaki Iino 1 2 , Jun-ichi Hanna 1 2
1 Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan, 2 , JST-CREST, Yokohama, Kanagawa, Japan
Show AbstractThe materials research for organic thin film transistors (OTFTs) has been extended to exploration of materials suitable for fabrication of crystalline thin films by solution processes. It is reported that solution processed OTFTs fabricated with polycrystalline thin films such as TIPS-pentacene and beozothienobenzothiophenes (BTBT) derivatives show high field effect transistor (FET) mobility over 1 cm2/Vs. Uniformity of the solution-processed films, however, is not so good as those of polymer and vacuum evaporated films because of recrystallization of materials during the solution processes: in fact, we often get a wide variation of FET performance in the solution processed OTFTs. In this paper, we propose a new solution-process using liquid crystalline films as a precursor for polycrystalline thin films for OTFTs. We selected two liquid crystalline materials as model compounds, i.e., dialkylated-terthiophene and BTBT derivatives, 8-TTP-8 and C10-BTBT, respectively. These materials are crystals at room temperature and exhibit liquid crystal phase in a certain elevated temperature range. We spin-coated solutions of these materials on thermal oxidized Si wafer at the liquid crystalline temperatures in an oven, and then cooled them to room temperature in order to make them crystallized. The spin-coating solutions of 8-TTP-8 and C10-BTBT in liquid crystal phases at 88 oC and 113 oC, respectively, gave quite uniform crystalline films: we could not see any structures on the surface of the crystalline films in hundreds micron scale by optical microscopy and laser microscopy; the films were molecularly flat and exhibited wide terrace structures over 10 μm from AFM images. FETs fabricated with 8-TTP-8 exhibited a small variation of FET mobility of 0.14 cm2/Vs, and TFTs fabricated with C10-BTBT exhibited FET mobility of 3 cm2/Vs, which is three times higher than those of crystalline film spin-coated at room temperature and successive post thermal annealing previous reported and as good as those of the films fabricated by vacuum evaporation. We discuss the origin of these good performances of TFTs fabricated via liquid crystalline phase, in addition to a new result on new OTFT materials with process-durability and high FET mobility over 1 cm2/Vs.
12:15 PM - F1.6
Solution Processed n-Channel Organic Field-effect Transistors with High Uniformity and Electrical Stability.
Shree Tiwari 1 , Keith Knauer 1 , William Potscavage 1 , Bernard Kippelen 1
1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
Show AbstractWe report on high performance n-channel organic field-effect transistors (OFETs) based on solution-processed [6,6]-phenyl C61 butyric acid methyl ester ([60]PCBM) with very good uniformity, electrical stability, and reproducibility. In our previous studies, solution-processed n-channel OFETs with [60]PCBM have been shown to produce electron mobility values higher than 0.1 cm2/Vs on the inorganic gate dielectric layers of thermally grown SiO2 or HfO2 deposited by atomic layer deposition (ALD) passivated with a thin buffer layer of crosslinkable divinyltetramethyl-disiloxanebis(benzocyclobutene) (BCB) on top, resulting in 30 V or 3 V operation respectively [1, 2]. BCB was used to minimize electron trapping at the dielectric/semiconductor interface, which is the primary limiting factor for n-channel conduction [3]. Here, we demonstrate the very high uniformity and reproducibility in [60]PCBM OFETs on Al2O3 by ALD)/BCB dielectric layer by fabricating several devices on the same substrate. On a single substrate, 64 devices with channel width (W) of 1000 μm and 32 devices with W = 2000 μm were fabricated. To calculate the average performance parameters, 16 (W = 1000 μm) or 8 (W = 2000 μm) devices of identical geometry were taken into account for channel lengths (L) of 25, 50, 100 and 200 μm. The 16 devices with W/L of 1000 μm/100 μm operated at 10 V exhibit excellent n-channel performances with an average electron mobility value of 0.11 ± 0.01 cm2/Vs and an average threshold voltage (VTH) of 1.6 V. The same number of devices with W/L of 1000 μm/50 μm exhibited similar average electron mobility value of 0.11 ± 0.01 cm2/Vs with average VTH of 2.0 V. All the devices exhibited high current on/off ratios (105-106) and sub-threshold slopes of about 0.4 V/decade. Transfer characteristics scanned for 3000 times at a time interval of 1 second between scans showed very good reproducibility of electrical characteristics in N2 atmosphere without any significant change in the performance parameters. After a continuous DC bias stress (VGS = VDS = 10 V) for 12 hours, the devices showed a decay of ~ 20% in drain current. Our results show that [60]PCBM can produce highly uniform and electrically stable n-channel OFETs on inorganic dielectrics with a BCB buffer layer on top.
[1] S.P. Tiwari, X.-H. Zhang, W.J. Postcavage, Jr., and B. Kippelen, J. Appl. Phys. 106, 054504 (2009).
[2] S.P. Tiwari, X.-H. Zhang, W.J. Postcavage, Jr., and B. Kippelen, J. Appl. Phys. 95, 223303 (2009).
[3] L.-L. Chua, J. Zaumseil, J.-F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nat. 434, 194 (2005).
F2: Dielectrics for TFTs
Session Chairs
Monday PM, November 29, 2010
Room 309 (Hynes)
2:30 PM - **F2.1
Fabrication and Stability of Low-temperature Solution-processed Organic Transistors.
Alberto Salleo 1 , Youngmin Park 1 , Leslie Jimison 1 , Jonathan Rivnay 1 , Tobin Marks 2 , Antonio Facchetti 3 2
1 , Stanford University, Stanford, California, United States, 2 Chemistry , Northwestern University, Evanston, Illinois, United States, 3 , Polyera Corp., Skokie, Illinois, United States
Show AbstractThere is great interest in being able to fabricate transistors from liquid precursors at temperatures lower than ~120°C, which makes them compatible with low-cost flexible substrates. We describe the fabrication of a hybrid organic/inorganic TFT from solution using a high capacitance sol-gel ZrOx dielectric cured at room temperature and an unannealed semiconducting polymer. The TFT swings from completely off to completely on within 3V on the gate, has an on/off ratio of the order of 105 and exhibits a mobility of approximately 0.2 cm2/V.s.While favorable static device characteristics are necessary conditions to make a dielectric/semiconductor pair technologically interesting, they are not sufficient. Gate bias stress for example has been studied in order to determine whether electrical device stability is satisfactory. In this regard, an “accelerated testing” procedure will be proposed to quickly determine the stabilized threshold voltage of organic transistors. From the materials standpoint, recently bias stress has been associated to water at the semiconductor/dielectric interface. By using directionally crystallized films of an n-type semiconductor (PDI8-CN2) processed at low temperature from solution, we will show that bias stress also depends on intrinsic properties of the semiconductor layer, such as its microstructure.
3:00 PM - F2.2
Low Cost Solution-processed High-k Gate Dielectric Materials for Large Area Circuit Applications.
Wan-Yu Lin 1 2 , Robert Mueller 1 , Kris Myny 1 , Soeren Steudel 1 , Jan Genoe 1 , Paul Heremans 1 3
1 , imec, Leuven Belgium, 2 Metallurgy and Materials Engineering(MTM), Katholieke Universiteit Leuven , Leuven Belgium, 3 Department of Electrical Engineering(ESAT), Katholieke Universiteit Leuven , Leuven Belgium
Show AbstractOne of the key challenges to manufacture low cost circuits (e.g. RFID tags, row driver) and backplanes on flexible substrates lie in the realization of reliable gate-dielectric with a high specific capacitance required for low voltage, high current drive. Flexible substrates necessitate deposition techniques with process temperatures lower than 150°C, making the production of high quality gate dielectric materials more difficult. Here we show a promising integration scheme for thin film circuits using anodization. Aluminium oxide can be fabricated easily and inexpensively by anodization of aluminium at room temperature, giving rise to an ultra-thin, smooth, and dense gate dielectric. Up to now, however, only single OTFTs have been shown with an anodized gate-dielectric. The reason is the difficulty of realizing two independent patterned metallization layers for source/drain and gate, which is required for circuits and AM-OLED backplanes. We show that only a uniform film of Al gives rise to a controlled and uniform oxide over large area. A novel method is also demonstrated to pattern the gate (aluminium) and overlying gate oxide (aluminium oxide) into individual islands, and to process source-drain contacts without side leakage between source and gate at the edge of these islands. Furthermore, we have fully characterized the properties of our anodized aluminium oxide, by demonstrating OTFT’s and unipolar circuits (inverter, 19-stage ring oscillator) with channel-length down to 3um at supply voltages as low as 2V.
3:15 PM - F2.3
High-k Gate Insulators for Thin Film Transistors Grown by Remote Plasma Atomic Layer Deposition.
Fu Tang 1 , Chiyu Zhu 1 , Robert Nemanich 1
1 Department of Physics, Arizona State University, Tempe, Arizona, United States
Show AbstractHigh-k oxides have been widely employed in the Si based nanoscale transistors in order to reduce the gate tunneling current and energy consumption. Recently, the application of high k dielectrics is also emerging in other semiconductor areas including as thin film transistors (TFTs) for flexible electronics. A high-k gate dielectric layer can significantly reduce the threshold voltage, increase the on/off current ratio and enhance the mobility of TFTs. One of the limiting factors in implementing high-k materials for flexible electronics is the development of a low temperature deposition process. In this work, we investigated the growth of Hf oxide, La oxide, and a Hf-oxide/La-oxide layered structure using remote plasma atomic layer deposition (ALD) at temperatures ranging from ~80°C to ~250 °C. The atomic bonding structure of the film was determined by in situ XPS. In a remote plasma process, the activated oxygen species enables a reduced temperature for ALD growth and ion induced damage to the film can be minimized. The XPS results indicated that for low temperature growth of pure Hf oxide, a significant amount of weakly bonded molecular oxygen was absorbed in the film deposited. This oxygen could lead to instabilities and adversely affect the function of TFTs. We established that increased the plasma power, resulted in a decrease of the amount of the absorbed oxygen. A post treatment of He or Ar plasma was also effective for removing the weakly bounded oxygen. We argue that the molecular oxygen is adsorbed at defect sites, and that the higher plasma power reduces the absorbed oxygen content either by diminishing the defected density and/or through photo-induced desorption. In addition, the pure Hf oxide films show a grained morphology which apparently reflects the polycrystalline nature of the Hf oxide. In order to suppress the crystallization of the oxide and to obtain a smooth morphology, we deposited 1-3 cycles of La-oxide between two adjacent Hf-oxide cycles. The multilayered films showed a significant improvement of the morphology compared with the roughness of the pure Hf oxide film. Process parameters were also identified that resulted in a relatively low concentration of carbon residue. *Work by US Army Cooperative Agreement W911NF-04-2-0005 (FDC-10-4.6)
3:30 PM - F2.4
UV Assisted Solution-based Zirconium Oxide Gate Dielectric for Low-voltage Operation of Organic Field Effect Transistors.
Young Min Park 1 , Alberto Salleo 1 , Juergen Daniel 2
1 Materials Science and Engineering, Stanford University, Stanford, California, United States, 2 , Palo Alto Research Center, Palo Alto, California, United States
Show AbstractOrganic field effect transistors (OFETs) have been attractive for low-cost and low-temperature processing of electronic devices such as RFID tags, sensors and electronic paper. For practical applications of OFETs, there is a need to develop nanometer-scale gate dielectric with high capacitance and low gate leakage current to achieve low-voltage operation. In this regard, inorganic high-κ metal oxide dielectrics have been investigated due to their high dielectric constant as well as the ability to functionalize their surface with self-assembled monolayers(SAM). Inorganic metal oxide, however, have required either vacuum processing or relatively high-temperature anneals, making them incompatible with low-cost solution processing on flexible substrates. Here, we demonstrate low-voltage polymeric OFETs operated below a gate voltage of -3V, fabricated with solution-processed zirconium oxide (ZrOx) at room temperature. ZrOx was deposited via a sol-gel process and cured by UV irradiation under ambient conditions, eliminating the need for a high-temperature anneal. UV irradiation decomposed the zirconium based sol-gel films into thin films composed of only Zr and O on a heavily doped Si substrate, as confirmed by X-ray photoelectron spectroscopy. The areal capacitance of UV cured dielectrics ranged from 470 to 522nF/cm2, and showed a dependence on UV irradiation time. Introduction of an Octadecyl-phosphonic acid (ODPA) SAM on the surface of ZrOx reduced the leakage current from the order of 10-4 A/cm2 to 10-7 A/cm2 at an applied voltage of -3V while making the dielectric more compatible with organic semiconductors. We demonstrate polymer OFET devices using poly(2,5-bis(3-dodecylthiophen-2yl(thieno[3,2-b]thiophene) (PBTTT C-14) on the solution-processed, UV cured ZrOx dielectric operating at low-voltage (|VGS|<3V) with high field effect mobility (µ~0.2 cm2/V.s) and high on-off current ratio (105~106).
3:45 PM - F2.5
Pressure Dependence on the Physical Properties of SiO2 Gate Oxide Formed by Inductive Coupled Plasma Oxidation.
Beomjong Kim 1 , Dongchan Kim 1 , Yoonjae Kim 1 , Hanjin Lim 1 , Jueun Kim 1 , Wookyeol Yi 1 , Daehyun Kim 1 , Bonghyun Kim 1 , Youngwan Kim 1 , Sungho Kang 1 , Youngseok Kim 1 , Woojun Lee 1 , Seokwoo Nam 1
1 , Samsung Electronics Co. Ltd., Hwasung Korea (the Republic of)
Show AbstractRecent semiconductor devices need low thermal budget process to scale down. The plasma oxidation is one of the most promising candidates. In this work, we investigated the pressure effect on the physical properties of the oxide grown by inductive coupled plasma oxidation. The activation energy (Ea) and electron temperature (Te) were calculated. The Te decreases as the pressure increases but the Ea increases with pressure. It is supposed that the pressure dependence on the Ea is related to the energy of oxygen ions participating in oxidation. In the low pressure region, ions are the major oxidants and they are accelerated by the plasma sheath potential. Because the potential is linearly proportional to the Te, the ions have more kinetic energy at the higher Te. These highly kinetic ions can easily break the Si-Si bonding and lower the energy barrier of oxidation. It reduces the Ea at low pressure below 100mTorr. In this case, the strong collisions can make the interfacial defect sites by damaging the initial silicon surface. The interfacial trap density estimated by charge pumping method shows the inverse proportionality with the pressure. At the higher pressure region, (> 100mTorr) the major oxidants are the oxygen radicals and the mean free path of these radicals decreases with pressure, the chance to reach at the silicon surface decrease. Thus, the Ea increases with pressure, although the Te is constant at over 100mTorr. The normalized field effective mobility is compared between samples of different pressures and the peak increases as the process pressure increases. For getting better interface, it is the key to lower the Te. From this point of view, the pressure is a very effective process parameter and it could come with an improved mobility and interface properties.
4:30 PM - F2.6
Precursor Design and Engineering for Low-temperature Deposition of Gate Dielectrics for Thin Film Transistors.
Anupama Mallikarjunan 1 , Laura Matz 1 , Andrew Johnson 1 , Raymond Vrtis 1 , Manchao Xiao 2 , Mark O'Neill 2 , Bing Han 1
1 , Air Products and Chemicals, Inc., Allentown, Pennsylvania, United States, 2 , Air Products and Chemicals, Inc., Carlsbad, California, United States
Show AbstractThe electrical and physical quality of gate and passivation dielectrics significantly impacts the device performance of thin film transistors (TFTs). As low temperature TFT processing becomes a requirement for novel applications and plastic substrates, there is a need for materials innovation that provides gate dielectrics having good density and dielectric constant (k), low leakage, low charge density (measured by flatband voltage or Vfb), low wet etch rate (WER), and high breakdown voltage (Vbd). The passivation dielectric also needs to act as a barrier to protect the TFT device. In this context, this paper discusses structure-property relationships and strategies for precursor development in silicon nitride, silicon oxycarbide (SiOC) and silicon oxide films; and demonstrates the value of precursor engineering for low temperature plasma enhanced chemical vapor deposition (PECVD) of SiO2 gate dielectrics (that are used with polysilicon TFTs for example). For SiO2 deposition, organosilicon precursors containing different types and amounts of Si, C, O and H bonding were experimentally compared to the industry standard TEOS (tetraethoxysilane) at different process conditions and temperatures. In general, carbon incorporation into these low temperature oxide (LTO) films was not detected by XPS or FTIR; and the O/Si ratio was between 2.1-2.2. However, major differences were identified in film quality especially WER (correlating to film density) and k values (correlating to moisture absorption). The paper will discuss a systematic methodology for optimization of the functionality of the precursors to enable superior performance over TEOS. It is advantageous to have precursors that are more plasma-driven and show less uncontrolled deposition as temperature is lowered. This is illustrated by the electrical performance with an optimized material, AP-LTO® 770. For example, under identical deposition conditions at 200°C, a TEOS SiO2 had a 6:1 BOE (Buffered Oxide Etch) WER of 538 nm/min vs 275 nm/min for AP-LTO® 770 film. This improvement comes due to higher density (measured by X –ray reflectivity) and lower moisture content (seen by FTIR) in the AP-LTO® 770 SiO2 films. Correspondingly, leakage current, k, Vbd, Vfb all show performance improvements over TEOS films. Additionally, the precursor has a lower B.P. than TEOS (B.P=169°C), simplifying current delivery and uniformity issues seen for large substrates. The design and development of such novel precursors is a key factor to successfully enable manufacturing of advanced low temperature processed devices.
4:45 PM - F2.7
Low-damage Preparation of SiO2 Dielectric Thin Film by the Photo-assisted Oxidation Processing.
Takehito Kodzasa 1 , Sei Uemura 1 , Kouji Suemori 1 , Manabu Yoshida 1 , Satoshi Hoshino 1 , Noriyuki Takada 1 , Toshihide Kamata 1
1 , National Institute of Advanced Industrial Science and Technology, Tsukuba Japan
Show AbstractWe have already reported that low-temperature (about 170C) preparation technique of SiO2 dielectric thin film that has high resistivity and extremely smooth surface by the photo oxidation processing. However convenient plastic films such as polyethylene terephthalate (PET), polystyrene (PS) and Poly(methyl methacrylate) (PMMA) are easily damaged by heating over 150C or light irradiation. Now, in this paper, we report that SiO2 thin film with high insulation performance can be obtained with no damage against light irradiation. And we show that the SiO2 dielectric thin film having high insulating property is prepared by the low-temperature processing below 100C by improving the pre- and post- processing of the photo oxidation of thin film.
5:00 PM - F2.8
Effect of Hydrogen on Electrical Performance of Charge-trapping Device Structure of SiAlON/Si3N4/SiO2/ Stacks.
Nam Nguyen 1 , Ziyuan Lu 2 , Markus Wilde 3 , Toyohiro Chikyow 1
1 Advanced Electronic Materials Center, National Institute for Materials Science, Tsukuba Japan, 2 Test and Analysis Division, NEC Electronic Corporation, Kawasaki Japan, 3 Institute of Industrial Science, University of Tokyo, Tokyo Japan
Show AbstractSilicon Aluminum Oxide Nitride (SiAlON) thin films are investigated as a new class of hydrogen diffusion barrier materials to replace the top silicon oxide layer in Metal-Oxide-Nitride-Oxide-Semiconductor (MONOS) charge-trapping flash memories devices. SiAlON thin films were deposited at temperature of 300 °C and oxygen partial pressure of 10-5 torr by pulsed laser deposition (PLD). The interfacial structure, chemistry along with the chemical composition, thickness, roughness of individual layer and H profile of MONOS stacks were analyzed using X-ray reflectivity (XRR), x-ray photoelectron spectroscopy (XPS), and nuclear reaction analysis (NRA). The changes observed in the interfacial structure, chemistry and H concentration of the MONOS device structures were correlated with their electrical performance. The results demonstrated that by using SiAlON to replace the top silicon oxide layer yields 1) reduced H concentration at the SiO2/Si interface and 2) enhanced electrical performance of MONOS memories devices. These findings suggest that SiAlON layer can effectively store hydrogen and it is a more effective diffusion barrier than the structurally open SiO2.
5:15 PM - F2.9
Small Molecule-polymer Blend Organic Field Effect Transistors with Long-term Environmental and Operational Stability Using Fluoropolymer/Oxide Bi-layer Top Gate Dielectric.
Do Kyung Hwang 1 , Canek Fuentes-Hernandez 1 , Jungbae Kim 1 , William Potscavage 1 , Sung-Jin Kim 1 , Bernard Kippelen 1
1 School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
Show AbstractOver the last several years, organic field-effect transistors (OFETs) have made great progress. However, long-term environmental and operational stabilities are still two major issues for commercialization of OFETs. Recently, much effort has been devoted to improve environmental and operational stabilities of OFETs. In most studies, OFETs with a bottom-gate geometry have been used. OFETs with a top-gate geometry are relatively rare because the choice of gate dielectric materials is limited since its deposition can potentially damage the organic semiconductor layer. An amorphous fluoropolymer, CYTOP, has been shown to be a promising candidate for the realization of top-gate geometries because it dissolves in fluorinated solvents that are orthogonal to most organic semiconductor materials. The CYTOP has an excellent chemical stability and is highly hydrophobic, which leads to OFETs with good operational stability. Instead of using a single layer of CYTOP, CYTOP/high-
k oxide bi-layer as top-gate dielectric combines the excellent chemical properties of CYTOP with the high film quality and large capacitance density of high-
k oxides. In addition, this bi-layer top gate dielectric can be an encapsulation layer against environmental exposure.
Here, we report on the improved stability and performance of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene)-poly(triarylamine) (PTAA) blend OFETs with a top gate geometry using a CYTOP/Al2O3 bi-layer. OFETs fabricated with a single Al2O3 layer operate below 8 V due to a high capacitance density of 78.6 nF/cm2, but show a large hysteresis and low average mobility value of 5.5(±1.9)×10-3 cm2/Vs. On the other hand, the devices with a single CYTOP layer show an average mobility value of 0.39±0.16 cm2/Vs without hysteresis. However, they operate at high voltages, up to 50 V, due to a low high capacitance density of 2.3 nF/cm2. In contrast, OFETs using the CYTOP/Al2O3 bi-layer show no hysteresis and an average mobility value of 0.46±0.08 cm2/Vs below 8 V, due to a relatively high capacitance density of 34.8 nF/cm2. After 20,000 multiple scans or under 24 h constant dc bias stress in an inert atmosphere, OFETs with the CYTOP/Al2O3 bi-layer show no degradation of mobility or threshold voltage. Upon air exposure, and after an initial variation, negligible changes in mobility and threshold voltage were measured in OFETs with the CYTOP/Al2O3 bi-layer after being stored in air for over five months.
5:30 PM - F2.10
Biocompatible and Biodegradable Materials for Organic Field Effect Transistors.
Mihai Irimia-Vladu 1 4 , Pavel Troshin 2 , Melanie Reisinger 1 , Guenther Schwabegger 3 , Reinhard Schwoediauer 1 , Vladimir Razumov 2 , Helmut Sitter 3 , Siegfried Bauer 1 , Niyazi Sariciftci 4
1 Soft Matter Physics , Johannes Kepler University, Linz Austria, 4 Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, Linz Austria, 2 Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka Russian Federation, 3 Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz Austria
Show AbstractOrganic electronics has the potential to develop electronic products that are biocompatible, bioresorbable, biodegradable or even capable to bio-metabolize. An ideal solution for the production of such devices involves the fabrication of the electronics either from natural materials, or from materials that have been proved to be at least biocompatible. Here we report the combination of biocompatible and biodegradable substrates based on hard gelatine capsule or commercially available plastic foil based on starch, corn and polylactic acid (Ecoflex®, BASF) with fully natural or materials found in common commodity products, as gate dielectrics and organic semiconductors in low operating voltage organic field effect transistors (OFETs). In a first example, low operating voltage OFETs are built on commercially available biodegradable plastic foil (Ecoflex®, BASF), comprising naturally occurring dielectrics: adenine, guanine, cytosine, thymine and widely accepted perylene diimide-a simple red dye used extensively in cosmetic industry. In a second example, complete bio-materials based OFETs are introduced based on glucose, lactose, sucrose, for the gate dielectrics with vacuum processed indigo or solution processed beta-carotene as organic semiconductors respectively. In a third example, fully degradable devices are produced on hard gelatine capsule substrates substrate comprising layers of adenine and guanine for organic dielectrics and indanthrene yellow G and indanthrene brilliant orange RF (two vat dyes used extensively in textile industry) for the organic semiconductor. Tremendous improvement of the OFETs characteristics are feasible simply by employing aurin, a naturally occurring red-orange pigment as a smoothening layer for Ecoflex and hard gelatine capsule substrates or by employing the anodization of the aluminium gate electrodes in combination with organic dielectric layers for the samples built on glass substrates. Such transistors may be seen at the heart of organic electronic circuits, to be used in low-cost, large volume disposable or throwaway applications, such as food packaging, plastic bags, disposable dishware etc. There is also significant potential to use such electronic items in biomedical implants.The work was financially funded by Austrian Science Foundation “FWF” within the National Research Network NFN on Organic Devices (P20772-N20, S09712-N08, S09706-N08 and S9711-N08) as well as by Russian Foundation for Basic Research (07-04-01742) and Russian Ministry of Science and Education (02-513-11-3382).
F3: Poster Session: Organic and CNT TFT
Session Chairs
Tuesday AM, November 30, 2010
Exhibition Hall D (Hynes)
9:00 PM - F3.2
Adjustable Memory Effect in Organic Thin Film Transistors via Embedded Nanoparticles in Pentacene Layer.
Sumei Wang 1 2 , Paddy, K. L. Chan 1 , Dennis,C. W. Leung 2
1 Department of Mechanical Engineering, the Hongkong Polytechnic University, Hongkong China, 2 Department of Applied Physics, the Hongkong Polytechnic University, Hongkong China
Show AbstractOrganic devices have attracted considerable attentions due to the simplicity of fabrication process, flexible property and low manufacturing cost. Here we demonstrate organic nonvolatile transistor memory devices based on silver nanoparticles embedded in pentacene thin films layer. The transistor transfer characteristics exhibit large hysteresis (memory window) when the gate bias sweeps from positive value to negative and then back to positive. The memory window can be adjusted by varying the Ag nanoparticle location within the pentacene layer. A memory window as large as 90V was achieved in the pentacene (15 nm)/Ag nanoparticle (5nm)/pentacene (25 nm) device, which is three times larger than that of the conventional structure where the Ag NPs are directly deposited on the silicon dioxide dielectric layer. The influence of silver nanoparticle size on the performance of memory device was also studied. When the nanoparticle size was 1nm, the memory device showed a long retention time of more than 5×104 seconds with a distinct on/off current ratio of 10. The memory effect was explained by a model based on Ag nanoparticle-induced traps. This work demonstrates a simple route of tuning the memory behavior in organic thin film transistors, which has potential for memory applications in flexible electronic circuits.
9:00 PM - F3.3
A Detailed Experimental Study of the Short Channel Effect in PPV Based Organic Field Effect Transistors.
Ali Veysel Tunc 1 , Elizabeth von Hauff 1 , Juergen Parisi 1
1 Department of Physics, EHF Laboratory, University of Oldenburg, Oldenburg Germany
Show AbstractThe origin of the short channel effect in polymer-based field effect transistors (FETs) was investigated. Here, we employed poly [2-methoxy,5-(3',7'-dimethyl-octyloxy)]-p-phenylene vinylene (MDMO-PPV) in blends with different ratios of 1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61 (PCBM). Bottom contact and bottom gate with interdigitated structure on SiO2 insulating substrates with channel lengths of 20, 10, 5 and 2.5 µm were used for these studies. In this work we demonstrate that the short channel effect is not only influenced by the device geometry but there is also a correlation between the hole current and field effect mobility, contact resistance and short channel behavior in PPV FETs. We observed that increasing the PCBM content in the blend leads to an increase in the hole current and field effect mobility, a decrease in the contact resistance, as well as a deviation from the saturation behavior of the output characteristics of the FET. This effect is attributed to a change in the polymer chain ordering in the source channel which in turn influences the charge transport properties in the polymer film. We show that using a self assembled monolayer on the SiO2 gate dielectric, known to affect polymer chain ordering, also influences the transistor parameters.
9:00 PM - F3.5
High Mobility, Low Voltage Operating C60 Based N-type Organic Field Effect Transistors.
Mujeeb Ullah 1 , Mihai Irimia-Vladu 2 , Melanie Reisinger 2 , Yasin Kanbur 3 , Guenther Schwabegger 1 , Reinhard Schwoediauer 2 , Siegfried Bauer 2 , Niyazi Sariciftci 4 , Helmut Sitter 1
1 Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz Austria, 2 Institute of Soft Matter Physics (SOMAP), Johannes Kepler University Linz, Linz Austria, 3 Department of Polymer Science and Technology, Middle East Technical University, Balgat, Ankara Turkey, 4 Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz, Linz Austria
Show AbstractWe report the state-of-the-art of C60 based bottom gate-top contact transistors fabricated by using different organic materials (BCB, Polyethylene and Adenine) / metal-oxide (AlOx) bilayer as gate dielectric. The engineering of the metal-oxide and the organic material passivation bilayer combines the advantages of having a high dielectric metal oxide and a thin passivation layer of polymer or small molecule capped on AlOx layer. The passivation layer helps both smoothing the dielectric surface and suppressing the leakage current while providing good interface properties with the semiconductor layers. This results in OFETs that operate at voltages less than 500 mV. The AlOx layers are readily processable from solution and cured at low temperature, instead of traditionally sputtering or high temperature processing, thus this process is suitable for low-cost organic field effect transistors (OFETs) manufacture. The output characteristics of the OFETs show well saturation behavior while the transfer characteristic display an on/off ratio in excess of 103. The OFET devices have a high field effect mobility, which ranges from 2 - 5 cm2/V s for different passivation layers, with low threshold voltages in the range of 20 mV to 5o mV.
9:00 PM - F3.6
Capacitance-Voltage Measurement of an Ambipolar Pentacene Field Effect Transistor in Operation by Using Displacement Current Measurement.
Yuya Tanaka 1 , Yutaka Noguchi 1 2 , Hisao Ishii 1 2
1 Graduate School of Advanced Integration Science, Chiba University, Chiba Japan, 2 Center for Frontier Science, Chiba University, Chiba Japan
Show AbstractRecently, organic field effect transistors (OFETs) have been extensively studied because of their low cost, light weight, flexibility and so on. However the operation mechanism is not yet well understood and OFET has not been put to practical use. Since typical organic semiconductors have an extremely small number of thermal carriers due to their large energy gap and are mostly used without any intentional dopants unlike inorganic FETs, OFETs seem to be driven by the injected carriers from the source electrode. Therefore it is quite important to understand the mechanism of channel formation due to carrier injection in OFET. Capacitance-voltage measurement is crucial to understand the carrier injection and accumulation in OFETs, and has been applied to various OFETs. We also have investigated OFETs by using one of C-V methods, displacement current measurement (DCM)[1]. In this technique, a current through a device is measured under a ramp voltage, and the observed current is proportional to the effective capacitance of the device. C-V measurement including DCM is two-terminal measurement, but transistors are three terminal devices. Thus, the observed carrier behaviors by conventional C-V methods are not the same in operating transistors. In order to understand the channel formation process in OFETs, we need to measure C-V in an operation transistor. In literature [2], an attempt to measure C-V of operating transistor have been reported by measuring both source-gate and drain-gate displacement currents simultaneously. But in the method, the measurement accuracy was limited due to the coexistence of displacement and actual currents in the observed current: the measurement condition was restricted to separate both the components. So, the quality of the obtained C-V curve was not enough to discuss the mechanism of the formation and annihilation process of channel. In this study, we have proposed another method to measure C-V of an operating transistor and succeeded to observe a subtle change of the capacitance during the channel formation. By applying a voltage between a source and drain electrodes with an isolated battery, only displacement current between a gate and the battery was measured. Since it is not necessary to separate displacement and actual currents, high accuracy is achieved. From the observed results of an ambipolar pentacene FET with a tetratetracontance (C44H90) buffer layer on SiO2 insulating layer, we could clearly observe the channel formation and annihilation processes in operating transistor and determine the pinch-off voltage. These results demonstrate that DCM is the powerful tool to investigate the channel formation process of OFET in detail. [1] S. Ogawa et al., Jpn. J. Appl. Phys. 42, L1275 (2003). [2] Y. Majima et al., Jpn. J. Appl. Phys. 46, 1 (2007).
9:00 PM - F3.7
Tetracene Thin Films on Organic Dielectrics: Growth, Structure, and Functional Properties.
Clara Santato 1 , Julia Wuensche 1 , Simone Bertolazzi 1
1 , École Polytechnique Montréal, Montréal, Quebec, Canada
Show AbstractTetracene vacuum-sublimed films exhibit interesting charge carrier transport and electroluminescence properties.These films have been used to demonstrate the first Organic Light Emitting Field Effect Transistors (OLEFET), one of the most promising classes of devices in the field of plastic optoelectronics. Investigating the role played by the morphology and surface chemistry of the dielectric substrate as well as establishing sound structure-property relationships in organic semiconductor films are among the keys to understand and improve OLEFET performance.Here we present our results on the growth, morphology, structure, and functional properties of vacuum-sublimed tetracene films deposited on different organic dielectric substrates, namely HMDS- and OTS-treated SiO2, polystyrene, parylene, polymethylmethacrylate. All the results have been compared with those obtained on SiO2 dielectric substrate, employed as reference.In terms of field effect transistor (FET) performance, the most interesting results were observed for tetracene FET based on polystirene and parylene gate dielectrics.A careful atomic force microscopy (AFM) study performed since the early stages of the growth (i.e. on films whose nominal thickness was 3, 5, 10, 17, 25 and 35 nm) revealed the good substrate surface coverage, large particles' size (expressed in terms of correlation length), and low particles' density obtained for tetracene films deposited on parylene and polystirene dielectric substrates. These results are able to explain the tetracene FET performance.The AFM observations were compared with the results collected during a synchrotron grazing incidence x-ray diffraction study carried out on these same tetracene films. Information concerning the film crystalline structure, the particles' size, but also the molecular arrangement in the cell were useful to get a deeper insight on the FET performance.The complexity and richness of the results we collected indicate the number of semiconductor- and dielectric-related features to be considered to rationally design the new generation of plastic optoelectronic devices.
9:00 PM - F3.8
Polymer Source-Gated Transistors.
S. Georgakopoulos 1 , D. Sparrowe 2 , F. Meyer 2 , Maxim Shkunov 1
1 Advanced Technology Institute, University of Surrey, Surrey United Kingdom, 2 Chilworth Technical Centre, Merck Chemicals Ltd., Southampton United Kingdom
Show AbstractThe reliability and stability of organic transistors has been steadily improving. Recently, amorphous conjugated co-polymer Field-Effect Transistors (FETs) have exhibited outstanding stability in air [1] and narrow mobility spread across large numbers of transistors and several different processing methods [2]. However, significant challenges remain until practical large-scale production of sufficiently high-performance devices can be realized. Two of these challenges are the high operating voltage of organic FETs and short-channel effects requiring downscaling of the dielectric layer. We demonstrate organic transistors capable of overcoming these two limitations.In Field-Effect Transistors (FETs) the gate modulates the conductance of a channel with ohmic source/drain cont