MRS Meetings and Events


EN05.10.21 2023 MRS Fall Meeting

Nanostructure Strategies for Improved Perovskite Solar Cells

When and Where

Nov 29, 2023
8:00pm - 10:00pm

Hynes, Level 1, Hall A



Antonio Garcia-Martin1

Instituto de Micro y Nanotecnologia, CSIC1


Antonio Garcia-Martin1

Instituto de Micro y Nanotecnologia, CSIC1
Organic-inorganic hybrid perovskite solar cells have attracted much attention due to their high power conversion efficiency (>23%) and low-cost fabrication. Directions to further improve these solar cells include strategies to enhance their stability and their efficiency by modifying either the perovskite absorber layer or the electron/hole transport layer. For example, the transparent electron transport layer (ETL) can be an important tuning knob influencing the charge extraction, [1] light harvesting, [2] and stability [3] in these solar cells, or the use of up-conversion nanoparticles to get better performance in the near IR part of the visible spectrum. [4] Here we present two strategies based on nanostructuration, first a fundamental study of upconversion fluorescence enhancement effects near Au nanodisks by scanning near-field optical microscopy and second the effects of a nanocolumnar TiO2 layer on the performance and the stability of Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskite solar cells. For the first case, the enhancement and localization of light near the metallic structures are directly visualized by using a single Er/Yb-codoped fluorescent nanocrystal glued at the end of a sharp scanning tip. [5] For the second we find that, compared to devices with planar TiO2 ETLs, the TiO2 nanocolumns can significantly enhance the power conversion efficiency of the perovskite solar cells by 17 % and prolong their shelf life. By analyzing the optical properties, solar cells characteristics, as well as transport/recombination properties by impedance spectroscopy, we observed light-trapping and reduced carrier recombination in solar cells associated with the use of TiO2 nanocolumn arrays. [6]<br/><br/><b>References</b><br/><br/>[1] S.S. Mali, et al., Chemistry of Materials <b>27</b>, 1541 (2015).<br/>[2] C. Liu, et al., Journal of Materials Chemistry A <b>5</b>, 15970 (2017).<br/>[3] M. Salado, et al., Nano Energy <b>35</b>, 215 (2017)<br/>[4] M. Bauch et al., Plasmonics <b>9</b>, 781 (2014)<br/>[5] L. Aigouy, et al., Nanoscale <b>11</b>, 10365 (2019)<br/>[6] Z. Hu, et al., ACS Appl. Mater. Interfaces <b>12</b>, 5979 (2020)



Symposium Organizers

Marina Leite, University of California, Davis
Lina Quan, Virginia Institute of Technology
Samuel Stranks, University of Cambridge
Ni Zhao, Chinese University of Hong Kong

Symposium Support

Enli Technology Co., LTD

APL Energy | AIP Publishing

Session Chairs

So Min Park
Lina Quan

In this Session

Interstitial Defect Relaxation DFT Study of Lead Halide Perovskites

Water-Assisted Morphology and Crystal Engineering of Hybrid Organic-Inorganic Halide Perovskite: Implications for Optoelectronic Properties

Self-Leveling Inks for Engineering Large Area Uniformity in High-Performance Flexography-Printed Perovskite Solar Cells

Towards Highly Efficient Fully Evaporated Perovskite/Si Tandem Solar Cells

The Outstanding Role of Dielectricity in Hybrid Solar Cell Absorbers

Controlling The Crystallization of Pure Bromide Quasi-2-Dimensional Perovskite Crystals for High Efficiency Pure-Blue Light-Emitting Diodes

Compositional Engineering of Single-Crystal Perovskite for Highly Efficient Photovoltaics

Atomistic Origin of Transparent Absorption Spectra of Halide Perovskites

Exploring a Novel Family of Conjugated Polymers for High Efficiency and Thermally Stable Perovskite Solar Cells

Charge Transfer Doping of Ruddlesden–Popper Metal–Halide Perovskites via Bulk Incorporation of Organic Molecular Dopants

View More »

Publishing Alliance

MRS publishes with Springer Nature