Clusters
- General Interest (GI)
- Broader Impact (BI)
- Electronics and Optics (EL)
- Energy (EN)
- Flexible, Wearable Electronics, Textiles and Sensors (FL)
- Materials Theory, Characterization and Data Science (MT)
- Nanomaterials and Quantum Materials (NM)
- Soft Materials and Biomaterials (SM)
- Structural and Functional Materials (SF)
Please note: On demand presentations do not have times assigned. Presentations with times assigned are Live presentations.
Symposium F.EN02—Silicon for Photovoltaics
Silicon continues to dominate the photovoltaic market with increasing efficiencies and lower costs combined with excellent reliability. The further development of silicon photovoltaics will also be driven by the ability to develop concepts at cell, module and system level that further increase yield, reduce cost and extend reliability. To maintain this trend, sustained material research in key and emerging areas along the value chain is vital, including: (i) new silicon-enabled absorbers as well as the understanding and mitigation of bulk absorber material defects; (ii) carrier-selective, passivating contact layers and stacks for high voltage devices; (iii) high efficiency device concepts including, but not limited to, photon management, multi-junction solar cells and new metallization schemes; and (iv) silicon PV module and integrated system related material research including reliability, stability and recycling aspects.
Topics will include:
- Absorber–Development of new silicon-enabled absorbers that could offer higher absorption and/or lower Auger recombination. This also extends to alternative absorber fabrication methods such as layer separation/transfer, epitaxial wafer processes, and solid-/liquid-induced crystallization aimed at kerfless silicon or ultra-thin silicon absorbers. Research related to bulk Si defects analysis, gettering, bulk hydrogenation, and lifetime degradation / mitigation are also encouraged.
- Carrier-selective passivating contacts–We welcome contributions discussing fundamental, underlying principles of carrier-selective contacts (i.e. surface passivation, band alignment/bending, Fermi-level pinning at interfaces), innovative deposition techniques and doping methods, contact hydrogenation, new materials (including transparent electrodes and doping-free approaches) and new functionalities (temperature stability, transparency, patterned depositions).
- High efficiency device concepts–We seek contributions aimed at improved solar cell performance, including the development of novel photon management strategies (e.g. advanced surface textures, up- and down conversion), multi-junction architectures (e.g. III-V/Si or Perovskite/Si tandems), new metallization technologies (especially to passivated contacts), and back-contacted architectures.
- We invite contributions dealing with module- and integrated system-related material aspects ranging from the interconnection and encapsulation of silicon solar cells to optical design of silicon modules (e.g. new anti-reflective coatings, albedo for bifacial modules) as well as integrating Si modules into systems (e.g. PV-battery interface, building integration, vehicle integration) and recycling.
- Silicon and silicon-enabled photovoltaic devices, such as all-silicon tandem solar cells, tandem-on-silicon solar cells, new device architectures, bifacial cells, silicon nanowires/nanocrystals solar cells, and thin-film silicon solar cells. Absorber, doping, contact, passivation, transparent conductor, and metallization materials for silicon (or tandem) photovoltaic devices.
- Silicon film materials such as amorphous silicon, nanocrystalline silicon, silicon carbides and oxides, epitaxial silicon and epitaxial layers on silicon, silicon-germanium, barium-disilicide, silicon clathrates and silicon-(carbon-)tin alloys. Methods of making and/or doping silicon including (PE)CVD, kerfless wafering, laser- and metal-induced crystallization, and implantation.
- Characterization and modeling of the structural, mechanical, electrical, and optical properties of silicon-related materials and devices on cell and module level ranging from novel measurement techniques to multi-scale modeling approaches.
- A tutorial complementing this symposium is tentatively planned.
Invited Speakers:
-
Teresa Barnes
(National Renewable Energy Laboratory, USA)
-
Jia Chen
(Jolywood(Suzhou) Sunwatt Co., Ltd., China)
-
Stefaan De Wolf
(King Abdullah University of Science and Technology, Saudi Arabia)
-
Valerie Depauw
(Interuniversity Microelectronics Centre, Belgium)
-
Frederic Dross
(DSM Advanced Solar, USA)
-
Weiyuan Duan
(Forschungszentrum Jülich GmbH, Germany)
-
Martin Heinrich
(Fraunhofer-Institut für Solare Energiesysteme, Germany)
-
Jasmin Hofstetter
(1366 Technologies, USA)
-
Christiana Honsberg
(Arizona State University, USA)
-
Dana Kern-Sulas
(National Renewable Energy Laboratory, USA)
-
Lars Korte
(Helmholtz Zentrum Berlin, Germany)
-
Sarah Kurtz
(University of California, Merced, USA)
-
Martin Ledinsky
(Institue of Physica of the Czech Academy of Sciences, Czech Republic)
-
Alison Lennon
(University of New South Wales, Australia)
-
Takuya Matsui
(National Institute of Advanced Industrial Science and Technology, Japan)
-
Rebecca Saive
(University of Twente, Netherlands)
-
Kwangyong Seo
(Ulsan National Institute of Science and Technology, Republic of Korea)
-
Akira Terakawa
(Panasonic Corporation, Japan)
-
Barbara Terheiden
(Universität Konstanz, Germany)
-
Karsten Wambach
(bifa Umweltinstitut GmbH, Germany)
-
Qi Wang
(Jinko Solar, China)
-
Kenji Yamamoto
(Kaneka Corporation, Japan)
-
Huanping Zhou
(Peking University, China)
Symposium Organizers
Kaining Ding
Forschungszentrum Jülich GmbH
Germany
James Bullock
The University of Melbourne
Australia
Eszter Voroshazi
imec
Belgium
David Young
National Renewable Energy Laboratory
USA