Symposium Organizers
Shubhra Bansal, University of Nevada, Las Vegas
Nicolas Barreau, Universite de Nantes
Alex Redinger, University of Luxembourg
Mike Scarpulla, The University of Utah
Symposium Support
AVANCIS GmbH
Codex International
First Solar, Inc.
University of Luxembourg/Fonds national de la recherche (Luxembourg)
ES20.01: Device Modelling
Session Chairs
Stephan Lany
Pawel Zabierowski
Tuesday PM, April 23, 2019
PCC North, 100 Level, Room 132 B
10:30 AM - *ES20.01.01
Development of an Integrated ACIGS Solar Cell Device Model at MiaSolé Hi-Tech
Jeff Bailey1,Geordie Zapalac1,Dmytro Poplavskyy1,Rouin Farshchi1
MiaSole Hi-Tech1
Show AbstractThin-film Ag-CIGS (or ACIGS) solar cells and modules produced by MiaSolé Hi-Tech yield high efficiencies rivaling polycrystalline silicon-based modules but are based on a high-throughput, PVD-based deposition process on flexible stainless steel substrates. The process is unique among thin-film solar manufacturers in that a complete device stack is produced without a vacuum break in less than one hour. Using this manufacturing system, a high level of process control and stability is possible via real-time control of the deposition process.
To continue performance improvements that close the gap between manufacturing material and champion small devices, a better understanding of the fundamental device properties is required. This requires development of a device model that accounts for electrical performance characteristics observed under light and voltage stress over time for comparison to real-world solar cell performance.
Our recent effort to generate a fundamental device model began with employing a wide variety of characterization results from our own measurements, those of our research partners, and features of many CIGS materials that have previously been excluded in prior device models. Additionally, device parameters must be based on actual device measurements and constituents, as heterojunction ACIGS solar cell devices are complex and errors compound quickly. The overall objective was to keep the model as simple as possible and look for generally good agreement among a variety of simulated measurements.
Most of the effort has been devoted to understanding the defect structure of the ACIGS absorber layer. Conventional capacitance-voltage profiling is supplanted in our measurements by high-speed C-V profiling (HSCV) that avoids many complications of transient charge effects in highly defective materials such as ACIGS. An important consequence of these measurements is the discovery that MiaSolé absorber layers (as well as other CIGS devices) can be defined by an acceptor-rich layer (ARL) adjacent to the CdS buffer layer. This ARL has been shown to have profound consequences for device electrical performance, as it can degrade fill factor and reduce efficiency.
The physical basis for the ARL is a matter of some debate. A variation in static shallow acceptor concentration is one possible source, but it predicts neither device metastability nor measured high concentrations of DLTS-visible defects. Charge accumulation at high concentrations of deep acceptors would be possible, but accounts for neither metastability nor carrier capture kinetics observed in DLTS. Instead we hypothesize that V(Se)-V(Cu) divacancy defects are responsible for charge accumulation in the ARL, and their simulated response to light- and voltage-stressing is consistent with our measurements. This hypothesis is qualitatively consistent with positron annihilation spectroscopy (PAS) measurements of our absorber. Predicted shallow acceptor and donor levels of the divacancy also provide an explanation for the long-observed high dopant compensation in CIGS, and at the concentrations predicted by our model, it is possible that the divacancies alone can be used to explain most of the charge and doping profile of the absorber.
Emphasis of the divacancy defect in our device model can guide MiaSolé Hi-Tech to new directions for device improvement that leverage our ability to directly manipulate absorber stoichiometry in our unique thin-film solar manufacturing system.
11:00 AM - ES20.01.02
Diagnosing Recombination and Resistive Losses in Thin-Film Chalcogenide Solar Cells Using a Silicon-Inspired Characterization Platform
Arthur Onno1,Amit Munshi2,Adam Danielson2,Carey Reich2,William Weigand1,Salman Manzoor1,Jason Yu1,Walajabad Sampath2,Darius Kuciauskas3,Zachary Holman1
Arizona State University1,Colorado State University2,National Renewable Energy Laboratory3
Show AbstractIn this work, we present a suite of characterization tools developed to accurately and systematically analyze losses in non-Si photovoltaic solar cell technologies, in particular thin-film chalcogenide devices. This characterization platform will enable easy access to the implied open-circuit voltage (iVoc) and fill factor (iFF) of devices, to their pseudo fill factor (pFF) and thus series resistance (Rs) at maximum power point, and to their complete-stack contact resistance (Rc). Together with calculated detailed-balance performance limits and traditional J-V measurements, these metrics will enable a precise accounting of recombination and resistive losses, from fundamental efficiency limits to experimental device performance. The characterization platform includes systematic determination of the absorber optical parameters (n & k), optical modeling of the device, calculation of the iVoc from measurement of the external radiative efficiency (ERE) of the absorber, Jsc-Voc measurements, and measurement on the contact stack resistance using through-the-absorber transfer line method (TLM).
Cd(Se)Te solar cells, our test system, provide a prime example of the potential impact of the techniques we propose to develop and implement: although they exhibit strong photoluminescence response, record poly-Cd(Se)Te cells have bandgap-voltage deficits (Woc) of approximately 550 mV, as compared with below 400 mV for all other mature PV technologies. Similarly, these record Cd(Se)Te devices have FFs below 80%, when other mature cells are near or above 85%. Frustratingly, a systematic identification of the origin of these sub-par performances – for example recombination or resistive losses – has been lacking, thus slowing down the development of these technologies. Similarly, it is often asserted that Cd(Se)Te cells need a better back (hole) contact. Although we believe this is true, it is currently unknown how high the Voc and FF could be for a given cell if it had a perfect back contact.
Using the proposed set of characterization techniques, users will be able to identify the sources of inefficiencies in thin-film chalcogenide solar cells, from bulk material quality and surface passivation to contact selectivity and resistivity. Rapid absorber and contact improvement will thus be possible.
11:15 AM - ES20.01.03
Spatial Inhomogeneities of Carrier Transport Properties in Polycrystalline Thin-Film Solar Cells
Mario Ochoa1,Romain Carron1,Enrico Avancini1,Thomas Feurer1,Ramis Hertwig1,Shih-Chi Yang1,Shiro Nishiwaki1,Stephan Buecheler1,Ayodhya Tiwari1
Empa–Swiss Federal Laboratories for Materials Science and Technology1
Show AbstractSeveral characterization techniques are usually performed on a localized region of any material because of convenience in a routine basis. However, lateral non-uniformities in chemical composition, structural defects and even the presence of voids can be found in a polycrystalline solar cell, i.e. CI(G)S, influencing the local carrier properties of the material. This implies that some of the material properties extracted from local characterization methods may not be representative of the full device performance complicating the correlation between measurements. For example, time-resolved photoluminescence (TRPL) is typically measured locally, and the effective lifetime values determined (including the influence of front/back recombination, etc.) are closely related to the open circuit voltage which is a macroscopic parameter that might be affected by any carrier lifetime non-uniformity. Therefore, information about the influence of spatial inhomogeneities on the carrier transport is important to assess whether it is enough to use local parameters to correlate different characterization results —and to predict the performance of the solar cell—, or to what extent it is required to consider non-uniform parameters that could be more representative of the whole device.
In this contribution, we use transient PL measurements spatially resolved in the micrometer-scale range to access the carrier properties of different absorbers. The TRPL setup is coupled into a microscope enabling to operate in confocal or widefield illumination mode. Widefield mode is used to map the samples in a broader range while confocal mode attempts to resolve the influence of the grains inside the structure with the highest optical resolution of the system (< 1 µm). Besides all the mechanisms involved in the determination of the effective carrier lifetime such as surface recombination, charge separation, etc., the use of confocal mode requires the consideration of lateral diffusion of carriers as well as the proper evaluation of the sample performance due to possible high injection effects. Accordingly, the interpretation of the measurements in both modes is aided by 2D simulations, which are also compared to the macroscopic I-V parameters of the devices. Specifically, 2D device simulations allow us to quantify the lateral diffusion of carriers as well as to include other key parameters involved in TRPL measurements, i.e. surface recombination or carrier mobility. All simulations use as input measured absorption coefficient as a function of the bandgap grading for improved modelling. Finally, results from other spatially resolved techniques will be shown to correlate device performance with TRPL mapping and support the main findings.
11:30 AM - *ES20.01.04
A Unified 1D/2D Solver for Modeling Carrier and Defect Transport in CdTe Solar Cells
Abdul Shaik1,Daniel Brinkman2,Christian Ringhofer1,Igor Sankin3,Dragica Vasileska1
Arizona State University1,San Jose State University2,First Solar3
Show AbstractNumerical simulation of solar cell device physics for predicting the performance, design and optimization of solar cells is a well explored active area of research. There are many tools and software packages like AFORS-HET, SCAPS-1D, AMPS-1D, PC1D, Silvaco TCAD, Sentaurus TCAD, etc., which are available freely or commercially, to perform numerical simulation of solar cells. The fundamental physics equations solved are continuity equations for charge carriers, namely electrons and holes, and the Poisson equation for electrostatic potential. In the continuity equation for electrons and holes the generation and recombination term is modeled through radiative processes, the SRH process, the Auger process etc. For the SRH generation recombination process an effective lifetime is assumed in the modeling. Combining this model with the boundary conditions, light and temperature simulation conditions, one can calculate I-V curves, efficiencies, fill factors etc., for the solar cell.
As the solar cell ages performance is affected. This can be microscopically explained through the transport of different defects present in the solar cell. The transport of defects can also cause metastability in solar cells. In our previous work we explained the metastable behavior of CdTe solar cells by studying the Cu related defect transport along with the carrier transport.
In this work, we present a novel Unified Solver for studying carrier and defect transport on an equal footing. The generation recombination term in the continuity equation for defects corresponds to the formation and transformation of defects. This formation and transformation of defects along with generation and recombination process for charge carriers is represented as a defect chemical reaction. Hence, we call our model as reaction-drift-diffusion modeling of solar cell. The drift-diffusion equations for defects require the diffusion constants and activation energies of the defect to be known and the defect chemical reaction require reaction rate constants to be known. These parameters are calculated using Density Functional Theory (DFT).
Since the main goal of our research work is to study short time metastability and long-time reliability concerns of cadmium telluride (CdTe) photovoltaics, special attention has been placed in the design of the solver to be able to produce results ranging from ns to hours/days/years. The solver gives us possibilities to explicitly account for all transient effects with free carriers (simulation of time resolved photoluminescence) and defects (simulation of performance instabilities, IV hysteresis etc). Various generation recombination processes can be represented as additional defect chemical reactions. Moreover, the Unified Solver supports accurate treatment of interfaces and grain boundaries that are crucial for the explanation of the operation of CdTe and other chalcogenide PV technologies.
The Unified Solver is benchmarked against Silvaco simulations of a homojunction and heterojunction solar cell. Excellent agreement is observed between the Unified Solver and Silvaco results for the key solar-cell parameters (short-circuit current and open-circuit voltage). Next, the Unified Solver is employed in constant temperature 2D simulation of chlorine diffusion annealing in a cadmium telluride (CdTe) system under insulating boundary conditions (isolated system). Chlorine is introduced in the system as a neutral interstitial at a half corner of the (1um×1.2um) structure. The concentration of chlorine interstitial is 1e16 cm-3 and the system is kept at a temperature of 750K. The sample is annealed for 240s using the test case of chlorine defect reactions. The time evolution of chlorine substitutional defect (ClA+) is presented. Emulation of process temperature profiles is also presented in the talk.
ES20.02: Material Preparation
Session Chairs
Jeff Bailey
Charles Hages
Manuel Ramos
Edgardo Saucedo
Tuesday PM, April 23, 2019
PCC North, 100 Level, Room 132 B
1:30 PM - **ES20.02.01
Developing Next-Generation Chalcogenide Semiconductors for Photovoltaics
Charles Hages1
University of Florida1
Show AbstractFor solar technology to compete with traditional energy sources, a continued decrease in photovoltaic (PV) energy generation cost is needed. Next-generation PV technology can achieve this by utilizing earth-abundant materials and low-cost processing techniques. Chalcogenide compounds are of particular interest in this area due to their prolific use in energy applications and amenability to high-throughput, low-cost processing techniques. Chalcogenides semiconductors have shown particular success in PV applications with materials such as Cu(In,Ga)(S,Se)2 (CIGS), Cu2ZnSn(S,Se)4 (CZTS), and CdTe. However, developing new materials and processing techniques require extensive research efforts to achieve the required high-performance goals. Complex device processing and non-ideal optoelectronic properties associated with early stage materials often prolong material development.
In this work, our approach to developing next-generation semiconductors for PV is shown. We utilize low-cost, scalable solution-based processing techniques which are amenable to high-throughput optimization and a variety of chalcogenide precursors. Furthermore, we utilize advanced optoelectronic and structural characterization to guide the material development process; this provides rapid feedback for accelerated material development through accurate screening of early-stage materials for relevant optoelectronic properties and optimal synthesis parameters. In particular, we focus on the extraction of optoelectronic properties relevant for device performance – without the need for device fabrication – through optical techniques. Previous work using these techniques for developing CZTS, CIGS, and perovskites will be shown, with application to new materials currently in development. Ultimately, the successful development of new semiconductor materials requires a cross-disciplinary approach linking fundamental material properties and processing to the device-relevant optoelectronic properties.
2:00 PM - ES20.02.02
The Challenges to Develop Sb2Se3/CdS Based Solar Cells in Substrate Configuration
Edgardo Saucedo1,Pedro Vidal-Fuentes1,Yudania Sánchez1,Marcel Placidi1,Victor Izquierdo-Roca1,Alejandro Pérez-Rodríguez1,2
IREC1,Universitat de Barcelona2
Show AbstractSb2(S,Se)3, is becoming a relevant thin film chalcogenide semiconductor with different technological applications such as: superconductivity, electronic components, electrode for sodium-ion batteries, photodetectors and as emerging photovoltaic absorber. In particular, and for this last application, the material has shown remarkable improvements in the last few years, demonstrating solar cells in superstrate configuration with power conversion efficiencies reaching 7.6%. In fact, and similarly to CdTe, most of the devices reported in the literature so far have been prepared using this configuration. This has opened interesting perspectives for their use in solar energy conversion applications, also taking into account the 1D crystalline organization of the material, with in principle benign grain boundaries and anisotropic conduction properties. Additionally Sb2(S,Se)3 has shown a high flexibility degree in terms of substrate type, due to the relatively low synthesis temperatures required for optimal high quality polycrystalline growth (300-400 C), allowing deposition onto polymeric, steel, ceramic and TCO/glass substrates. This versatility makes this compound very promising for ubiquitous applications such as building integrated photovoltaics (BIPV) (flexible, bifacial, and semi-transparent), wearables, or autonomous IOT applications among others.
In this work we present a systematic optimization study of the synthesis of Sb2Se3 thin films using substrate configuration solar cells, by a sequential process based on reactive annealing under Se atmosphere of thermally evaporated Sb layer precursors. The study is centered in the analysis of Sb precursor thickness and reactive thermal annealing conditions (annealing temperature, time, and pressure) on the compositional, structural and morphological properties of the layers. We observe the formation of continuous layers with large and homogeneous crystals, reporting for first time a weak photoluminescence signal close to 1.3eV in agreement with the band gap value obtained by IQE, and a systematic vibrational characterization under resonant and non- resonant Raman conditions that allows report 15 peaks of the 30 expected.
After a first optimization on Mo coated soda lime glass substrates, we report a promising power conversion efficiency of 5.3% in substrate configuration with a VOC of 403 mV (the highest value reported for this configuration to the best of our knowledge), close to the 7.6% certified world record in superstrate one.
Additionally the study is complemented with a wide characterization of the fundamental properties of Sb2Se3 layers and devices using morphological and physic-chemical characterization (Photoluminescence, SEM, XRF, XRD), and with a complete analysis of the impact of the absorber stoichiometry under different regimes (Se-rich, Se-poor, Sb-rich and Sb-poor conditions). All this will be correlated with the optoelectronic characterization (JV, IQE, CV) of the solar cells. Finally, the main challenges to develop Sb2Se3 type solar cells in substrate configuration will be reviewed in the frame of the obtained results.
2:15 PM - ES20.02.03
Antimony Chalcogenide with Tunable Quasi-One-Dimensional Ribbons Thin-Film Solar Cells Grown by Close-Space Sublimation
Feng Yan1,Liping Guo1,Baiyu Zhang2,Lin Li1,Xiaofeng Qian2
The University of Alabama1,Texas A&M University2
Show AbstractThe non-cubic antimony chalcogenides, i.e., Sb2Se3, formed by quasi-one-dimensional ribbons can enhance light absorption and carrier transport by tuning the ribbon direction using the close-space sublimation (CSS) deposition. The power conversion efficiency (PCE) ~7% is found to be associated with the ribbon direction, which was investigated with theoretical calculation and experimental measurement in the Sb2Se3 films and devices. The substrate temperature and film thickness are critical for the fine-tuning of ribbon orientations during the CSS deposition. Our results show that [211]-preferred orientation leads to the minimum series resistance and highest light absorbance in the device. The device reliability measurement and in-depth elemental profiling analysis suggest that the interdiffusion between window layer and absorber layer dominate the degradation mechanism. This observation demonstrates that Sb2Se3-like quasi-one-dimensional materials with van der Waals boundaries can achieve scalable production at low cost and hold great potential for next-generation solar cell.
2:30 PM - *ES20.02.04
Recent Advances in Si/CIGS Tandem Cells
Daniel Lincot1
CNRS-IPVF1
Show AbstractTandem cells are considered as the next generation solar cell to overpass the intrinsic efficiency limitations of single junction solar cells, fixed by the Schockley Queisser limit below 33% and more probably below 30%. Silicon solar cells are already approaching the theoretical limit of about 29%, and represent 95 % of the present PV Market. Tandem solar cells on silicon would make possible to search for 43% theoretical limit, making practical module efficiencies of more than 30%. Combinations with hybrid perovskite and III-V top cells are presently focusing a lot of attention, but an alternative is to develop top cells based on chalcogenide materials, which technologies are well proved on the market (CdTe and CIGS). In the presentation we will report on researches carried out on silicon/CIGS solar cells. Based on the experience on single junction CIGS low band solar cells (1.15 eV) at about 20% efficiency, wide gap CIGS solar cells (1,6-1,8 aV) are grown on single cristal silicon substrates by coevaporation, with lattice parameters matching with silicon, thanks to compositional adjustments (Ga to In, S to Se). In order to give more flexibility in interface electrical properties engineering, the silicon substrate is functionnalized by a thin III-V buffer layer, based on GaInAlAsP lattice matched alloys1. Epitaxial growth of CIGS has been successfully demonstrated and first devices have been elaborated to address the formation of high efficiency top cells alone, using Si/III-V as a selective back contact. Further structural, chemical and luminescence characterization will be reported.
Ref :
1 D. Lincot et al., Proceedings of EUPVSEC 2018
3:30 PM - *ES20.02.05
Cu(In,Ga)Se2 Thin-Film Solar Cells—Are New Device Concepts Required for Further Efficiency Leap?
Romain Carron1,Stephan Buecheler1,Enrico Avancini1,Thomas Feurer1,Johannes Loeckinger1,Thomas Weiss1,2,Mario Ochoa1,Ramis Hertwig1,Shih-Chi Yang1,Shiro Nishiwaki1,Giovanna Sozzi3,Roberto Menozzi3,Ayodhya Tiwari1
Empa Swiss Federal Laboratories for Materials Science and Technology1,University of Luxembourg2,University of Parma3
Show AbstractA large gap still remains between the achieved conversion efficiencies and the Shockley-Queisser limit for Cu(In,Ga)Se2 (CIGS) based solar cells. Some of the current limitations such as parasitic absorption losses are known and solutions are being developed. For some other limitations the origin is not well understood yet, but is required for knowledge based improvements. Thorough materials and device characterization of highly efficient solar cells can help to understand the origins of the remaining losses.
We used advanced materials and device characterization including high resolution transmission electron microscopy, time-of-flight secondary ion mass spectrometry, and time resolved photoluminescence (TRPL) combined with multidimensional device modelling to confine the origins of the remaining losses. We will summarize our recent findings on optical, compositional, structural and electronic properties in multi-stage co-evaporated CIGS layers and at interfaces to adjacent layers. In particular, we will describe how surface recombination velocities, minority carrier lifetime and mobility can be extracted from TRPL measurements and what we can learn from these findings. Further, we will present the presence of undesired compositional non-uniformities & voids and discuss their formation mechanism and role on device performance. Combined with recent findings obtained on narrow band gap CIS absorbers our results indicate possible inherent limitations originating from current fabrication methods and device architecture, which leads to new strategies how the actual CIGS solar cell efficiency can be pushed closer to the Shockley-Queisser value.
4:00 PM - ES20.02.06
12.2% CIS and 13.6% CIGS Solar Cells Fabricated from Copper-Rich DMF Molecular Precursor Solutions
Hao Xin1,Jingjing Jiang1,Shaotang Yu1,Sanping Wu1,Weibo Yan1
Nanjing University of Posts & Telecommunications1
Show AbstractRecently, 22.8% efficient Cu(In,Ga)Se2 (CIGS) thin film solar cell has been reported, demonstrating its great potential as a competitor to silicon solar cells. Adopting solution method to prepare highly efficient CIGS light absorbing materials is crucial for reducing the cost of CIGS solar cell fabrication and achieving large-scale production. We have previously reported 10.3% copper indium selenide (CIS) solar cell with the absorber fabricated from single DMF molecular precursor solution, demonstrating the great potential of DMF as relatively environmental benign solvent for solution processed thin film solar cells. The metallic element ratio (Cu/In or Cu/(In+Ga)) is the key factor to affect the quality of absorber materials. Here, we have systematically investigated the effect of the Cu/In ratio (0.85 to 1.2, from Cu-poor to Cu-rich) in the precursor solution on the CIS device performance. We found that solar cell efficiency increases with the Cu/In ratio from 0.85 to 1.05 and then decreases from 1.05 to 1.2. The best device was achieved from a ratio of 1.05 with a peak power conversion efficiency (PCE) of 12.20%, a short circuit current density (Jsc) of 36.12 mA/cm2, an open circuit voltage (Voc) of 0.499 V, and a fill factor (FF) of 67.57%. Further, by gallium alloying, CIGS solar cell with a PCE of 13.6% has been fabricated with a Voc of 0.600 V, Jsc of 34.78 mA/cm2 and FF of 65.17% under similar Cu-rich (Cu/(In+Ga)=1.05, Ga/(In+Ga)=0.2) condition. Our results for the first time demonstrate highly efficient CIS/CIGS solar cells can be achieved from absorbers grown under Cu-rich conditions. Characterization of the absorber materials and solar cell devices are undergoing to understand the mechanism behind the phenomenon observed.
4:15 PM - ES20.02.07
Wet-Chemical Treatment of Cadmium Telluride (CdTe) Photovoltaics for Enhanced Open-Circuit Voltage (VOC) and Fill Factor (FF)
Ebin Bastola1,Randy Ellingson1
University of Toledo1
Show AbstractCadmium telluride (CdTe) thin film solar cells are renowned photovoltaic materials for its high absorption coefficient, suitable band gap and low manufacturing cost. The fabrication of highly efficient devices includes reduced intrinsic defects and improved interfaces at front and back contacts. The back-contact processing includes the formation or deposition of tellurium (Te) layer to make an ohmic contact with a metal. Here, we report wet-chemical treatments of CdTe using various iodine compounds and sodium tetrafluoroborate (NaBF4). The iodine compounds tested are elemental iodine (I2), ammonium iodide (NH4I), mixture of iodine and ammonium iodide (I-/I3-) and formamidine iodide (FAI). The treated surfaces were studied using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The treatment with iodine compounds produced Te rich layer on the back surface based on Raman, XRD patterns and changed surface morphology. The fabrication of the devices after these treatments, except I2-propanol, improved the open-circuit voltage (VOC) and fill factor (FF) of the devices. The I2-propanol etching produced tellurium iodide (TeI) in β-phase on the surface which reduced device performance. The photoconversion efficiency of CdTe devices after treatment is up to 14.0% (VOC 841 mV and FF 78%) while untreated devices have an efficiency of about 12.7% (VOC 814 mV and FF 73%). In case of BF4- treated samples, it did not produce Te rich layer, but it seems like BF4- ions are passivating CdTe surface with enhanced VOC and FF compared to standard devices.
4:30 PM - *ES20.02.08
Status and Challenges of CdTe Photovoltaics
Wyatt Metzger1
National Renewable Energy Laboratory1
Show AbstractCdTe solar technology is producing electricity at costs less than conventional fuels in many regions. Yet despite its commercial maturity, there is still headroom to increase performance significantly by addressing fundamental material challenges including compensation, hole density, carrier lifetime, and interfaces. This presentation will describe ongoing work to understand and overcome these challenges.
ES20.03: Poster Session I: Material Growth
Session Chairs
Nicolas Barreau
Alex Redinger
Tuesday PM, April 23, 2019
PCC North, 300 Level, Exhibit Hall C-E
5:00 PM - ES20.03.01
Revealing the Optimal Conditions for the Synthesis of High Efficiency Cu2ZnSnGe4 Wide Band Gap Absorber
Edgardo Saucedo4,Nada Benhaddou1,2,Moleko Samuel Mkehlane3,Zakaria Laghfour1,2,Yudania Sánchez4,Ignacio Becerril4,Maxim Guc4,Safae Aazou2,Victor Izquierdo-Roca4,Emmanuel Iwoha3,Zouheir Sekkat1,2
Mohammed V University in Rabat1,Moroccan Foundation for Advanced Science & Innovation & Research, MAScIR, OCP Foundation,2,University of Western Cape3,IREC4
Show AbstractLast advances on kesterite (Cu2ZnSn(S,Se)4) corroborate the importance of doping and alloying strategies, not only for tuning the properties of this family of materials, but also for achieving higher efficiencies and broadening their possible range of application. Alkaline (Li, Na, K) and Ge doping; as well as Ag, Cd and Ge alloying are demonstrating a high potential by enhancing different aspects of these materials. In particular, the partial or total substitution of Sn by Ge in kesterites is an emerging approach aiming to improve their efficiency and broaden their band gap up to 2.2 eV with direct application in advanced solar cell tandem concepts, or semi-transparent photovoltaics for building integrated photovoltaics (BIPV) among others. Many studies have proved that the use of Ge as doping or alloying element influences drastically the overall parameters of Sn-based kesterite devices improving carrier lifetime, boosting the VOC, and increasing the conversion efficiency in solar cell devices. The highest efficiency reported until now for pure Cu2ZnGeSe4 (CZGSe) compound is a promising 7.6% achieved with an annealing under H2Se environment and employing very similar process parameters to those typically used for the pure Sn alloy. This work aims to study and optimize the main parameters affecting the synthesis of CZGSe comparing their main characteristics with the pure Sn compound.
For this purpose, Cu2ZnGeSe4 thin films were synthesized onto Glass/Mo substrates by a sequential process, based on the sputtering of Cu, Zn and Ge metallic layers, followed by a reactive annealing under a Se+Ge atmosphere inside a graphite box. Parameters like metallic stack order; annealing temperature (450-550 C), pressure (1-1000 mbar), routine (one or two-step annealing) and time; as well as the composition and of the use of chemical etchings were investigated. Additionally, a combinatorial sample with compositional gradients was prepared covering the full Cu/Zn, Cu/Ge and Zn/Ge range of interest, in order to correlate composition with the formation of secondary phases and defects. All the samples were fully characterized using a complete set of techniques (XRF, Raman spectroscopy, XRD, SEM and EDX) and by preparing and measuring solar cell devices.
After trying several stack orders, Cu/Zn/Ge is selected as the most promising one, leading to the formation of less secondary phases. The optimization of the annealing parameters confirms that a two stage process is the best suited for high quality absorbers. This includes a stage at relatively low temperature (330 C) for the synthesis of the CZGSe compound, and a second step at relatively high temperature (480 C) for its crystallization, revealing that lower annealing temperatures than in the case of the pure Sn compound are required. The compositionally graded sample shows that best efficiencies are obtained for absorbers with Cu/Ge ratio around 0.67 and Zn/Ge around 1.10, suggesting that Cu and Zn-poorer conditions than for pure Sn kesterite are required. Using this compositionally graded sample, we will present a deep analysis of the correlation of the different optoelectronic parameters with composition, including the analysis of secondary phase and possible point defects formation. With a first optimization which includes an etching of the absorbers in KCN, a champion cell with an efficiency of 6.5% (VOC = 556 mV, FF = 59.6%, JSC = 19.6 mA/cm2) is reported. Additional experiments introducing different sources of Ge during the annealing process (GeSe2, GeSe, and pure Germanium) in order to change the partial pressure inside the graphite box will also be presented.
5:00 PM - ES20.03.02
Tin Antimony Sulfide Thin Films by In Situ Chemical Solution Deposition for Their Application as Absorber in Solar Cells
Luis Rodríguez-Guadarrama1,Ivonne Alonso-Lemus2,José Campos3,Jose Escorcia-García4
Cinvestav Unidad Saltillo1,CONACYT, Cinvestav Unidad Saltillo2,Instituto de Energías Renovables-UNAM3,CINVESTAV-IPN4
Show AbstractRecently, different works related to the improvement of SnS-based thin film for solar cells applications have been reported. These solar cells (SCs) are built with complex configurations and fabricated using expensive techniques to obtain high short circuit current densities, Jsc, above of 20 mA/cm2, and power conversion efficiencies of 4.36%. However, the SCs often have low values of open circuit voltage, Voc, below of 400 mV, which limit their application to industrial scale. In order to incresase the Voc, some researchers have developed either transition metals-doped SnS films or the synthesis of novel semiconductor ternary materials based in Sn and S such as Sn-Sb-S (TAS): SnSb2S4, SnSb4S7, and Sn2Sb2S5. Conventionally, ternary compounds are synthetized by deposition of individual intercalated layers of SnS and Sb2S3, followed by annealing at high temperatures.
In this work, SnS and Sb2S3 thin films has been obtained by in-situ chemical bath deposition. The effect of the sulfur load, time deposition and pH bath solution has been studied. Antimony and tin chloride were used as metal ion sources, thioacetamide as sulfur ion source, and tartaric as the complexing agent. Chemical bath deposition was carried out at 80°C varying the concentration of sulfur and time of deposition while the pH of the solution was kept between 8 and 9. Then, the resulting samples were heated in nitrogen at temperatures from 300 to 500 °C to make them crystalline and form the ternary compounds. The results showed that the film thickness depends of the sulfur load, deposition time, pH and the temperature during the heating. The thickness of the as-deposited film without excess of sulfur was of 117 nm for a time deposition of 2 h. An increase on the sulfur load produced thicker films with thickness above of 250 nm. The SEM analysis of the as-deposited films showed a morphology of elongated grains of 100 nm, which increase their size after heating. The optical band gap of the as-deposited films was of 1.6 eV, which decreased to 1.46 and 1.24 eV after heating the films at 300 and 500°C, respectively. All the TAS films exhibited optical absorption coefficients higher than 104 cm-1. Moreover, the photo-conductivity of the as-deposited films was of 10-9 Ω-1 cm-1 while those heated at 300 and 500 °C showed photo-conductivities of 10-8 to 10-6 Ω-1 cm-1. Finally, the evaluation of these ternary absorbers into the FTO/CdS/TAS/C structure gave a Voc of 462 mV and a Jsc of 2.37 mA/cm2 under white-LED light. These preliminary results demonstrated that TAS absorbers could be good candidates to obtain higher Voc values than those obtained with the SnS-based SCs.
5:00 PM - ES20.03.03
Beyond 13% Efficient Cu2ZnSn(S,Se)4 Solar Cells from DMSO Molecular Precursor Solution
Yuancai Gong1,Yifan Zhang1,Weibo Yan1,Hao Xin1
Nanjing University of Posts & Telecommunications1
Show AbstractKesterite Cu2ZnSn(S,Se)4 (CZTSSe) semiconductors, composed of non-toxic and earth-abundant elements, have great potential as low cost and mass production photovoltaic absorber materials. However, the best CZTSSe solar cell, obtained from hydrazine based ink by IBM in 2014, only has an efficiency of 12.6%[1], much lower than similar structured Cu(In,Ga)Se2 (CIGS) solar cell (22.6%)[2]. The development of kesterite Cu2ZnSn(S,Se)4 thin-film solar cells is currently hindered by the large open-circuit voltage deficit (Voc-def). The possible reasons for the large Voc-def include large tail states (electrostatic potential fluctuation and bandgap fluctuation), Cu-Zn antisite order-disorder, formation of deep defects and interface recombination, which is dominate still under debating. Here, we have explored different strategies to understand the Voc deficit in DMSO solution processed CZTSSe solar cells. First, we found that the Voc-def as well as efficiency of DMSO solution processed CZTSSe solar cells is strongly affected by the precursor tin oxidation state (Sn2+/Sn4+) in the solution. The power conversion efficiency achieved from Sn4+ solution was 13.2% with a Voc-def of only 0.570 V, much lower than the current world record CZTSSe device (0.617 V), whereas the efficiency obtained from Sn2+ solution was only 7% with Voc-def higher than 0.600 V. Investigation by solution chemistry and film morphology characterization reveals that the huge difference comes from different complexation of the Sn with ligand (thiourea) and solvent (DMSO) which lead to different reaction pathways from solution to solid state film and thus dramatic absorber quality and device performance. Second, we have used Ag or Ge alloying to further investigate the their effects on the Voc-def of Sn4+ solution processed CZTSSe solar cells. Characterization of CZTSSe absorber materials including XRD, Raman, SEM, EDX, TEM, and PL and device performance show positive effect of the alloying on Voc-def issue. Our results shed new lights on how to suppress CZTSSe solar cell Voc-def and improve their efficiency to higher level.
5:00 PM - ES20.03.04
Zn2SbN3—A Novel Ternary Nitride for Optoelectronic Applications
Allison Mis1,2,John Perkins2,Stephan Lany2,Andriy Zakutayev2,Geoff Brennecka1,Adele Tamboli2,Elisabetta Arca2
Colorado School of Mines1,National Renewable Energy Laboratory2
Show AbstractCrystalline antimony-based nitrides have long posed fabrication challenges due to the high nitrogen chemical potential required for formation and the tendency of antimony to react with oxygen and moisture to form amorphous oxynitrides. To date, Zn2SbN3 is the only reported crystalline antimony nitride in which Sb functions as a cation with a positive oxidation state. This material warrants further investigation not only due to its unique nature, but also due to its advantageous optoelectronic properties, which may be tunable like those of other ternary nitrides. Theoretical calculations predict this material to have a direct band gap (1.7eV), low effective mass for electrons (0.15-0.19me) and moderate effective masses for holes (2.4 me), which suggests that Zn2SbN3 has promise as a photoactive absorber. [1] Experimental measurements show room-temperature photoluminescence activity and band edge alignment appropriate for the hydrogen evolution reaction.
In this work we report on the detailed investigation of the optoelectronic properties of thin-film Zn2SbN3 and their correlation to the films’ composition. Films were grown through combinatorial co-sputtering and characterized by spatially-resolved measurements. Experimental results show that the wurtzite-derived crystal structure is stable over a large range of cation composition (Zn/(Zn+Sb) = 60-80%) as determined by X-Ray Fluorescence. 4-point-probe measurements reveal 200-400 kOhm resistance, tunable with composition. UV-visible spectroscopy shows an absorption onset around 1.7 eV. This will be further investigated through photoluminescence and Hall effect measurements. Growth parameter space will be mapped by varying factors such as growth rate, substrate temperature, and the use of a N2-cracker to enhance the nitrogen chemical potential. A fuller understanding of the relationship between fabrication conditions and film properties will help evaluate the attainability of this new ternary nitride’s predicted utility as a photovoltaic material.
[1] Arca et al., J. Am. Chem. Soc., 2018, 140, 4293
5:00 PM - ES20.03.05
CZTS Solar Cells Absorbers Produced by Sputtering or Pulsed Laser Deposition
Jorgen Schou1,Mungunshagai Gansukh1,Filipe Martinho1,Simon Lopez-Marino1,Moises Espíndola-Rodríguez1,Alireza Hajijafarassar1,Eugen Stamate1,Sara Engberg1,Andrea Crovetto1,Stela Canulescu1,Ole Hansen1
TU Denmark1
Show AbstractCurrently CZTS sulfide absorbers for solar cells with the highest efficiency have all been produced by vacuum techniques which thus seem to be superior to solution processing for CZTS cells. Sputtering and pulsed laser deposition are typical vacuum techniques, which are employed for solar cell absorbers of complicated stoichiometry. Both techniques are well-known for stoichiometric transfer of chemical compounds such as metal oxides and nitrides from a target to a substrate. The two techniques are non-thermal since the emitted atoms from the target are quite energetic and may have an energy distribution with a tail up to more than 10 eV. This non-thermal arrival energy is also known to be beneficial for growth of layers with high crystallinity.
In the photovoltaic literature there seems be a limited number of examples of a comparison between the absorbers and cells produced by either sputtering deposition (SD) or pulsed laser deposition (PLD) except for an inconclusive study without production of solar cells by Sun et al. [1].
We have recently produced solar cells by co-sputtering deposition and PLD with a record efficiency of 6.6 % for SD, while that by PLD reached 5.2 % [2]. While the efficiency was comparable, there were several processing differences, in particular in the thermal annealing steps. It is not clear how different the ideal thermal profiles for the two techniques are under similar deposition conditions, i.e., same type of Mo-coated substrate and precursor films of the same thickness and composition.
Furthermore, for single-target SD the composition of the films can be very difficult to tune because of preferential sputtering from the growing film induced by the arrival of fast atoms or ions from the target. In contrast, for standard PLD (with a single target) the composition can be varied by adjusting the laser fluence, since the transfer of copper atoms from target to film is increasing with fluence (and with 0.8 J/cm2 as the optimum fluence) [2,3].
We will discuss a few other PLD experiments: The CZTS-films can be doped with additional elements, e.g. by Ag using doped targets without any additional complications in the PLD process. Also the production of oxide precursor films is comparatively easy with an oxide target for PLD, while it is not yet clear how successful a detour via metal oxides to sulfides would be for co-SD.
Detailed results for the comparison between films made by SD and PLD as well as examples PLD-films of other compositions will be shown in this contribution.
[1] L. Sun et al., Journal of Crystal Growth 361 (2012) 147–151
[2] A. Cazzaniga, A. Crovetto et al., Solar Energy Materials & Solar Cells 166 (2017) 91–99
[3] J. Schou et al., Applied Physics A) 124 (2018) 78
5:00 PM - ES20.03.06
Engineering Ga Profile in Low Temperature-Processed Cu(In,Ga)Se2 Thin Film by Using a Thin Ag Precursor Layer
Hyeonggeun Yu1,Gayeon Kim1,Jeung-hyun Jeong1,Jong-keuk Park1,Wonmok Kim1,Donghwan Kim2
Korea Institute of Science and Technology1,Korea University2
Show AbstractLow temperature-processed Cu(In,Ga)Se2 (CIGS) thin film absorber is important for demonstrating a functional CIGS solar cell on plastic substrates. However, control of the band profile mainly dominated by the Ga concentration profile in the CIGS film has been challenging due to slow atomic diffusion at low temperatures. Here, a systematic engineering of Ga profile in CIGS films is reported by employing a thin Ag precursor layer prior to CIGS co-evaporation. By increasing the Ag precursor layer thickness, Ga gradient was mitigated along with improved CIGS grain size, which enhanced the overall solar cell performance. Formation of liquid-phase Ag-Se could provide mobile channels for Ga diffusion along the grain boundaries and expedite CIGS recrystallization process at such a low temperature.
5:00 PM - ES20.03.08
Solution-Processed Earth-Abundant Cu2BaSn(S, Se)4 Solar Absorber Using a Non-Toxic Solvent
Betul Teymur1,Yihao Zhou1,Edgard Ngaboyamahina1,Jeffrey T. Glass1,David Mitzi1
Duke University1
Show AbstractVarious chalcogenides (Cu(In, Ga)(S, Se)2, CdTe, Cu2ZnSn(S, Se)4) have been adopted as successful absorber materials for application in thin-film photovoltaic (PV) and photoelectrochemical (PEC) devices. However, despite being commercialized (e.g. Cu(In,Ga)(S,Se)2, CdTe) or showing performance advances (e.g., Cu2ZnSn(S,Se)4), several concerns and material limitations remain regarding scarcity/toxicity (e.g., In and Ga/ Cd) and Cu-Zn anti-site disordering in earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) chalcogenides.Cu2BaSn(S, Se)4(CBTSSe) has recently gained substantial attention as an alternative semiconductor material due to desirable properties for solar energy conversion applications, and reduced tendency for antisite disorder relative to Cu2ZnSn(S, Se)4. In this study, as an alternative to more expensive vacuum-based film-deposition processes, we report a low-toxicity solution-based process for the fabrication of high-quality CBTSSe absorber layers with µm-scale film thickness and grain size. The facile process involves spin-coating an environmentally benign solution of highly soluble, inexpensive and commercially available precursors, Ba(NO3)2, Cu(CO2CH3)2and SnI2 in DMSO, followed by sequential sulfurization/selenization annealing. A high-temperature pre-baking step under sulfur vapor is needed for each film layer to avoid forming the impurity phase, Ba(SO4) when starting from the soluble Ba(NO3) reagent. Our reproducible approach forms a dense, 1-µm-thick, single phase CBTSSe absorber layer with large grains (0.9-4.5 µm) and a tunable band gap (e.g., 1.68 eV under the typical processing conditions employed). Additionally, we demonstrate the first prototype solution-deposited CBTSSe PEC device, exhibiting a photocurrent of ~10mA/cm2at 0 VRHE((increasing to ∼12 mA/cm2during the stability test), comparable with analogous devices based on vacuum-processed CBTSSe films, as well as stable hydrogen evolution for more than 10 hours. These results demonstrate the prospects for low-cost solution-processing of high-quality CBTSSe film and absorbers for thin film PV and PEC cells.
5:00 PM - ES20.03.09
Chemical, Structural and Photovoltaic Properties of Cd Chalcogenide Thin Films Grown by Chemical Bath Deposition on GaAs(100)
Ofir Friedman1,Omri Moschovitz1,Yuval Golan1
Ben-Gurion University of the Negev1
Show AbstractCd chalcogenide films are direct band gap semiconductors that can harvest photon energy in a wide energy range from 2.42 eV (CdS) to 1.74 eV (CdSe) by compositional tuning or chemical gradation. Growth of such films using chemical bath deposition is advantageous due to low production costs and the ability to easily control bath composition and resulting film microstructure. We have recently demonstrated monocrystalline CdS and CdSe deposited on GaAs substrates by chemical bath deposited.1, 2 In this work we present the chemical, structural and photovoltaic properties of Cd(S,Se) solid solution thin films.3 We present evidence for the formation of chemically graded films which can be expected since thiourea (S precursor) decomposes faster than sodium selenosulfate (Se precursor) and as a result, S anions are first to react with the substrate surface. The physical and chemical properties of the films were characterized using x-ray powder diffraction, scanning electron microscopy, analytical transmission electron microscopy and energy dispersive spectroscopy mapping. Finally, current-voltage measurements of a GaIn-eutectic/GaAs/Cd(S,Se)/In device were conducted at room temperature under 1 sun. We demonstrate increasing photo-response with S/Se ratio in CdSxSe1-x based photovoltaic cells. This work presents a comprehensive and applicable study on chemical bath deposited Cd chalcogenide thin films.
1. O. Friedman, A. Upcher, T. Templeman, V. Ezersky and Y. Golan, Journal of Materials Chemistry C, 2017, 5, 1660-1667.
2. O. Friedman, D. Korn, V. Ezersky and Y. Golan, CrystEngComm, 2017, 19, 5381-5389.
3. O. Friedman, O. Moschovitz and Y. Golan, CrystEngComm, 2018, 20, 5735-5743.
5:00 PM - ES20.03.10
Semi -Transparent P-Type Barium Copper Sulfide as an Interface Layer for Cadmium Telluride Solar Cells
Kamala Khanal Subedi1,Ebin Bastola1,Indra Subedi1,Nikolas Podraza1,Randy Ellingson1
The University of Toledo1
Show AbstractOptically transparent p-type conductors enable development of transparent electronics, and opportunities to develop high-efficiency bifacial photovoltaic devices. Sulfide materials offer an interesting alternative to oxides for the photovoltaic applications due to better hole transport properties. We report on the structural, optical, and electronic properties of earth-abundant p-type transparent conducting barium copper sulfide (BCS) thin films fabricated using solution-processing. The BCS thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Vis–NIR spectroscopy, and spectroscopic ellipsometry (SE). A BCS film of thickness 100 nm can transmit > 70% of the visible light with band gap ∼ 2.4 eV. Based on SEM images, initial BCS films look compact with a grain size of ∼15 nm. Our studies show that these films are conductive with a carrier concentration of ∼1019 cm-3, making them promising hole transport materials for photovoltaic applications. We will discuss cadmium telluride (CdTe) devices fabricated using BCS layer as an interfacial layer between CdTe and a standard Cu/Au. Additionally, we will extend our study to fabricate bifacial CdTe devices employing the transparent BCS buffer layer and a conducting oxide as the back contact.
5:00 PM - ES20.03.11
Deposition of Cd1-xZnxSeyTe1-y by Closed-Space Co-Sublimation for Wide-Bandgap Top Absorbers in Tandem Photovoltaic Devices
Carey Reich1,Arthur Onno2,Joe Carpenter2,Tushar Shimpi1,Amit Munshi1,Anna Kindvall1,Andrew Ferguson3,Wyatt Metzger3,Walajabad Sampath1,Zachary Holman2
Colorado State University1,Arizona State University2,National Renewable Energy Laboratory3
Show AbstractPolycrystalline II-VI and silicon are the most mature material systems for photovoltaic applications, both produced and used at the GW-scale by the photovoltaic industry. Their combination in tandem devices – with a silicon bottom cell and a wide-bandgap (1.70-1.75 eV) II-VI top cell – is, thus, a promising pathway. However, such a development has so far been stymied by the absence of a suitable wide-bandgap polycrystalline II-VI absorber, with high enough material quality to ensure a performant top cell. In the particular case of the wide-bandgap alloy Cd1-xZnxTe, this is largely due Zn out-diffusion during the CdCl2 process – required to “activate” the material by passivating internal defects and, thus, to achieve high-efficiency polycrystalline CdTe and CdSeTe devices – leading to a final film with a bandgap closer to 1.5-eV CdTe than 1.7-eV Cd1-xZnxTe. Reducing the intensity of the CdCl2 treatment while still achieving activation of the material is believed to be a key step to enable high material quality 1.7-eV II-VI cells.
In the case of non-Zn-alloyed materials, CdSexTe1-x films exhibit substantially stronger luminescence than their CdTe counterparts before the CdCl2 passivation treatment step, indicating a higher as-deposited material quality and, correspondingly, a longer minority carrier lifetime after CdCl2 treatment. Following these results, we theorize that incorporation of Se into Cd1-xZnxTe would lead to higher material quality of as-deposited wide bandgap films. We expect that such films would require a lower intensity CdCl2 treatment to activate, leading to limited Zn out-diffusion. Hence, we deposited the quaternary alloy Cd1-xZnxSeyTe1-y using a modified close space sublimation (CSS) process from sources containing CdSeyTe1-y and Zn. The deposited films were characterized by Transmission and Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and X-ray Diffraction in order to assess their material properties and composition as a function of deposition parameters. Optoelectronic properties were assessed with Transmittance, Photoluminescence, and Time-Resolved Photoluminescence measurements. Preliminary device results will be reported.
5:00 PM - ES20.03.12
Efficiency Improvement of Cu2ZnSnS4 Solar Cell by Optimizing the Interface Chemistry
Kaiwen Sun1,Chang Yan1,Jialiang Huang1,Xiaojing Hao1
University of New South Wales1
Show AbstractHigh bandgap kesterite Cu2ZnSnS4 (CZTS) has attracted world-wide attention in recent years owing to the earth-abundance and non-toxicity of its constituents and the realization of high and stable performance [1]. The large deployment of photovoltaic (PV) in the future would demand stable, abundant and non-toxic materials similar to Si, in either flexible/rigid single junction thin film solar cells or tandem cells with Si bottom cell. In this regards, CZTS is more advantageous over other single junction cells and their associated top cell for tandem cells. For its industrial-scale deployment, obtaining high efficiency CZTS is the first prerequisite. Until recently, however, state-of-the-art CZTS devices were limited under 10%, being far below the Schockley-Queisser (SQ) limit of about 33% efficiency under terrestrial conditions [2]. Major limitations lie in the large open circuit voltage deficit (Voc-deficit) and a comparably low fill factor (FF). The loss mechanisms for the Voc and FF have been extensively investigated and the hetero-junction interface quality is one the most proposed factors that contribute to the performance limit.
One of the critical elements of forming a desirable interface structure in hetero-junction PV technology is the junction-formation step [3]. At present, the preferred approach in CZTS community is to deposit a thin CdS layer by chemical bath deposition (CBD) method, where a suitable amount of ammonium hydroxide (ammonia) is applied as the complexing agent. The function of the ammonia has been extensively studied in CIGS (1) clean the absorber surface before the deposition, (2) control the cation slow release, (3) supress the formation of detrimental impurity like Zn(OH)2 at the interface and (4) minimize the metastability behaviour of the device. In our successive ionic layer adsorption and reaction (SILAR) process for alternative ZnCdS buffer deposition, however, no ammonia has been applied. In order to further optimize the interface quality, we explored adding ammonia in the cation solution to realize its similar function in CdS deposition process.
In summary, the CZTS/ZnCdS interface quality is optimized by applying ammonia as complexing agent in the precursor solution during the SILAR process for ZnCdS deposition. Excess oxide and hydroxide impurities formed at the interface are limited to a low level, which reduces the related electronic defects in the depletion region and alleviates the metastability behavior caused by the Zn(OH)2. The application of ammonia also enables the control of reaction mechanism, improving the epitaxial growth, thereby reducing the interface recombination. Finally, efficiency of up to 10% is achieved by modifying the interface structure thanks to the chemistry method.
5:00 PM - ES20.03.13
Understanding and Controlling Zn Loss During Cl Activation of Cd1-zZnxTe Films
Adam Phillips1,Fadhil Alfadhili1,Geethika Liyanage1,Bhuiyan Anwar1,Manoj Jamarkattel1,Jacob Gibbs1,Michael Heben1
University of Toledo1
Show AbstractWide bandgap Cd1-xZnxTe (CZT) is of interest for a top cell in tandem devices because it has a tunable bandgap and is expected to leverage the low cost CdTe fabrication process. However, the vapor pressure of ZnCl2 is orders of magnitude higher than that of CdCl2 at Cl activation temperatures, which results in Zn loss during processing, thereby reducing the bandgap. In the CZT films, the Zn can be replaced with the Cd of the CdCl2 treatment or simply leave Zn vacancies in the film. Either of these effects are detrimental to device performance and make it challenging to fabricate higher bandgap absorbers based on CdTe. Here, we investigate CZT composition for films activated in an enclosed box with varying CdCl2 and ZnCl2 vapor pressures. We will determine how controlling the vapor pressure of the two Cl sources affects the evolution of the CZT film. These results will allow us to determine if Zn loss can be avoided.
5:00 PM - ES20.03.14
Fabrication and Characterization of Selenized Stacked CIGSe Absorber Layers by Evaporation Technique
Ganesh Regmi1,J.S. Narro-Rios1,S. Velumani1
Centro de Investigación y d e Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN)1
Show AbstractPolycrystalline Cu(In, Ga)Se2 (CIGSe) quaternary semiconducting material is a mesmerizing absorber layer to fabricate the high-efficiency thin film photovoltaic device. Among the different evaporation growth processes of CIGSe thin film, the deposition of copper, Indium, Gallium, and selenium stacking layer structure is one of the versatile methods due to its simplicity, good stoichiometry, and resulting throughput efficiency in photovoltaic devices. In the experiment, the metallic elements copper (Cu), indium (In), and gallium (Ga) were deposited in specific orders at room temperature and then the whole structure was selenized at (450-550) °C with different time of selenization (30-60 min). Selenization effect on structural, morphological, optical, compositional and electrical properties of prepared films was studied. Results show that the structural, morphological and optical properties of CIGSe thin films strongly depend on the growth mechanism, annealing temperature, time of selenization and chemical composition. X-ray diffraction (XRD) pattern showed the chalcopyrite structure of CIGSe with (112) preferred plane. The surface morphology and chemical composition of selenized thin films were investigated by scanning electron microscope (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS. The grains were transmuted from featureless melted to well faceted bladed tetragonal grains of CIGSe by SEM images. Raman spectroscopy exhibited A1 mode peak along with B2/E mode peak. The root mean square (RMS) roughness of the films was studied by atomic force microscopy (AFM) and was ranged between 60 to 90 nm. The depth profile study showed that the distribution of elements depends upon the elemental order in the stacking structure. Optical testing was conducted by UV spectrophotometry and observed the absorption coefficient in the order of 105 cm-1. The carrier concentration was varying from 1016 to 10 17 cm-3 by hall effect Van der Pauw method. The results showed that 450 °C and 500 °C of selenization temperature was not sufficient for the inter-diffusion of all elements forming a good CIGSe absorber layer. Instead, the film selenized at 550 °C for 60 min showed a better result which could be a good absorber layer for highly efficient CIGSe based thin film solar cells
5:00 PM - ES20.03.15
XPS Analysis of the CuGaSe2 - CuAlSe2 Single Crystals Grown by CVT
Barys Korzun1,Shanti Rywkin1,Tai-De Li2,Jonathan Adam1
The City University of New York, Borough of Manhattan Community College1,Advanced Science Research Center at the Graduate Center of CUNY2
Show AbstractCopper gallium diselenide (CuGaSe2) and copper aluminum diselenide (CuAlSe2) belong to the
I-III-VI2 group of compounds and are extensively studied as absorbing materials in solar cells and as active elements in optical filters. To optimize their properties, it is necessary to control their surface properties. The goal of the present paper is to investigate the effects of etching on the surface of the CuGaSe2 – CuAlSe2 single crystals and compare the results of chemical etching and argon ion beam sputtering.
Single crystals of seven alloys of the (CuGaSe2)1-x (CuAlSe2)x system, with x = 0.20, 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90, were grown by chemical vapor transport (CVT) in an evacuated quartz tube using iodine as a transporting agent. Typical dimensions of the grown plate-like single crystals were about 10 mm × 5 mm × 0.5 mm with a well-developed surface (112).
X-ray photoelectron spectroscopy (XPS) measurements were performed with PHI 5000 VersaProbe II XPS system using a monochromatic Al Kα source (15 kV). The pass energy was 117.4 eV for survey scans and 29.35 eV for high-resolution scans. The pressure in the analysis chamber was maintained below 5×10-8 Pa for data acquisition. The data was processed using Multipak software, version 9.6.0. The XPS data was internally referenced to the C-C C1s peak (BE for C-C of 284.78 eV). Raman measurements in backscattering configuration were performed at room temperature using a WITec alpha 300R confocal Raman imaging system with an excitation Nd:YAG laser at a wavelength of 532 nm and a 20x objective lens.
The untreated, chemically etched, and Ar+-sputtered surfaces of single crystals were investigated, and the effects of chemical etching and then Ar+ sputtering on the same surface of a crystal were determined. The spectra of the untreated samples showed a typical oxidized surface, strong O1s and C1s signals. The Se3d spectra revealed an additional component (Se4+) due to the existence of SeO2 at the surface of the untreated samples. An additional signal corresponding to I3d5/2 at 619.1 eV was detected, showing the presence of single crystals of CuI on the surface of the untreated samples. Chemical etching for 30 min removed iodide compounds. After Ar+ sputtering for 30 s, the oxygen and carbon contamination at the surface was removed. After the treatments, no detectable lattice damage was observed. The change of parameters of Ar+ sputtering from 4 mm2, 2 kV, 1 μA to 5 kV, 25 mA, resulted in the appearance of an Al sub-peak corresponding to the neutral state of Al.
The position and shape of the Se3d peak on the composition of the solid solutions were investigated and explained by the binding behavior of the Se atoms in the (CuGaSe2)1-x (CuAlSe2)x system. There was a correlation of the Raman active modes with the change in chemical composition of this system.
5:00 PM - ES20.03.16
Optical Properties of Thin Films of Haycockite
Barys Korzun1,Rohan Rashid1,Marin Rusu2,Thomas Dittrich2,Anatoly Galyas3,Andrey Gavrilenko4
The City University of New York, Borough of Manhattan Community College1,Helmholtz-Zentrum Berlin fuer Materialen und Energie2,Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus3,Kazan State Power University4
Show AbstractMultinary semiconducting compounds of the I-III-VI2 group (I – Cu, Ag; III – Al, Ga, In; VI – S, Se, Te) with crystal structure of chalcopyrite CuFeS2 are at the focus of current research as absorbing materials which are used in solar cells. By this reason studying the Cu-Fe-S system and determination the composition ranges of the existence of ternary compounds in this system can help to develop the methods of the improvement of the properties of the above-mentioned compounds of the I-III-VI2 group for solar cells. The goal of the present paper is to prepare thin films of haycockite Cu4Fe5S8 and to study their optical properties.
Thin films on glass substrates were deposited by flash evaporation technique from previously prepared ingots of haycockite Cu4Fe5S8. Morphology of thin films and their chemical composition were investigated using the Hitachi TM3000 Tabletop Microscope equipped by Energy Dispersive Spectrometer (EDS). The magnification was varied from ×50 to ×10000. The X-ray studies were carried out using monochromatic Cu Kα-radiation (1.5406 Å, step size 0.01° or 0.04°, counting time 10 s). The Rietveld analysis of the X-ray powder diffraction data was done using the FullProf software. X-ray photoelectron spectroscopy (XPS) measurements were performed with PHI 5000 VersaProbe II XPS system using a monochromatic Al Kα source (15 kV). The pass energy was 117.4 eV for survey scans and 29.35 eV for high-resolution scans. The pressure in the analysis chamber was maintained below 5×10-8 Pa for data acquisition. The data was processed using Multipak software, version 9.6.0. The XPS data was internally referenced to the C-C C1s peak (BE for C-C of 284.78 eV). The optical transmission was measured using Cary 500 spectrophotometer in the wave lengths interval from 400 nm to 2800 nm. Studies of the effects of illumination on the surface voltage were taken using surface photovoltage (SPV) technique in the energy range of 0.5 – 5.0 eV.
It was found that thin films have the chemical composition with the atomic content of Cu, Fe, and S of 25.21, 27.77, and 47.02 at. % with the atomic ratios of Cu/Fe and S/ (Cu + Fe) equaling to 0.91 for the atomic ration Cu/ Fe and 0.90 for the atomic ratio S/ (Cu + Fe) while these theoretical values for haycockite Cu4Fe5S8 are equal to 0.80 and 0.89 respectively. Thin films of chalcopyrite consist of separate grains with the approximately equal areas of about (1000 – 2000) μm2. It may be proposed that this structure appeared during cooling thin films because it completely covers the surface of thin films. The small inclusion of the second phase with the chemical composition close to talnakhite Cu9Fe8S16 was detected. The most common occurrence of the inclusion of the second phase along the borders of the grain shows that they are may be also responsible for the cracking of thin films. Energy band gap was estimated using both transmission and SPV methods. Usage of thin films of haycockite Cu4Fe5S8 as absorber in solar cells is discussed.
Acknowledgment. B. Korzun would like to thank PSC-CUNY for financial support of the studies under project TRADA-49-552.