Symposium Organizers
June Lau, National Institute of Standards and Technology
Daniel C. Ralph, Cornell University
Yimei Zhu, Brookhaven National Laboratory
Symposium Support
Aldrich Materials Science
Seagate Technology
U2
Session Chairs
Javier Pulecio
Daisuke Shindo
Monday PM, December 02, 2013
Hynes, Level 2, Room 206
2:30 AM - U2.01
Nanostructured Elastic Magneto-Dielectrics for Radio Frequency Applications
Mert Vural 1 Benjamin Crowgey 2 Leo Kempel 2 Peter Kofinas 3
1University of Maryland College Park USA2Michigan State University East Lansing USA3University of Maryland College Park USA
Show AbstractFunctional composite materials with mechanical elasticity that possess substantial dielectric permittivity (ε), magnetic permeability (mu;), low dielectric and magnetic loss are needed for the fabrication and miniaturization of flexible electronic devices including radio-frequency (RF) antennas, sensors and electronic identification chips. We report on the fabrication of flexible magneto-dielectric composites with low magnetic and dielectric loss, achieved by dispersion of high saturation magnetization, low coercivity air-stable iron (Fe) nanoparticles and iron/silver (Fe/Ag) core-shell nanoparticles in polydimethylsiloxane (PDMS) matrices. The magneto-dielectric composites made of air-stable Fe nanoparticles are adapted for RF communication devices with broad operation frequency, since they possess high mu; (4.4) and low ε (16.4), while maintaining low magnetic (0.28) and dielectric (0.053) loss values. Additionally, the Fe nanoparticle composites allow tensile elongation of 15% before breaking, which demonstrates the flexible nature of the material. The magneto-dielectric composites fabricated using Fe/Ag core-shell nanoparticles can combine high mu; (3.68) and ε (26) with low magnetic (0.28) and dielectric (0.1) loss, which makes them suitable for the RF communication device miniaturization. The Fe/Ag core-shell nanoparticle composites can also deform plastically under tensile elongation as high as 70%.
2:45 AM - U2.02
Magnetic Hybrid Materials Based on Spinel-Metal-Oxide Nanoparticles Assembling into Carboxymethyl-Cellulose/Cetiltrimethyl-Ammonium-Bromide Templates: On the Control Its Morphological Features
Nubia Esther Torres-Mtz. 1 2 Marco Antonio Garza-Navarro 1 2 Raul Lucio-Porto 3 Domingo Ixcoatl Garcia-Gutierrez 1 2
1UANL San Nicolamp;#225;s de los Garza Mexico2UANL Apodaca Mexico3Universitamp;#233; de Nantes Nantes Cedex France
Show AbstractOptimization of one-pot synthetic procedure for the control of the morphological features of magnetic hybrid materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) and carboxymethyl-cellulose (CMC)/cetiltrimethyl-ammonium-bromide (CTAB) coordination complexes, is reported. The influence of their synthesis parameters (precursor ratio, stirring rate, temperature and synthesis time) on the particle size distribution and the size and morphology of CMC/CTAB templates was investigated. The synthesized HNM were characterized by transmission electron microscopy and their related techniques, such as bright field and high angular annular dark field (HAADF-STEM) imaging, as well as selected area electron diffraction (SAED), using a FEI Titan G2 80-300 microscope. The interactions among SMON, CMC and CTAB were investigated by Fourier transform infrared spectroscopy (FTIR) in a Thermo Scientific Nicolet spectrometer. Magnetic response of the synthesized HNM was evaluated in a Quantum Design MPMS3. The experimental evidence suggests that, the formation of these HNM occurs due to the competition between CTAB molecules and SMON to occupy CMC intermolecular sites nearby to its carboxylate functional groups. Thus, the morphology and size of CMC/CTAB templates can be tuned varying the CTAB:SMON ratio. Moreover, it was found that the magnetic response of the HNM depends on the confinement degree of the SMON into the CMC/CTAB template. Hence, its magnetic characteristics can be adjusted controlling the size of the template, the quantity and distribution of the SMO nanoparticles within the template and its sizes.
3:00 AM - *U2.03
Electron Holography Study of Magnetic Nanostructures in Functional Materials
Daisuke Shindo 1 2 Yasukazu Murakami 1 2 Hyun Park 2 Hidekazu Tanaka 3
1Tohoku University Sendai Japan2RIKEN Wako Japan3Osaka University Ibaraki Japan
Show AbstractElectron holography is a unique electron microscopy technique to visualize electromagnetic fields on the nanometer scale. We developed the electron holography system on the basis of a JEM-3000F electron microscope by installing a Lorentz lens and a magnetizing stage for detailed study of magnetic nanostructures of various functional materials [1]. Recently we have also utilized an HF-3300X electron microscope by which “split-illumination electron holography” can be carried out [2]. In the split-illumination method, additional biprisms are inserted into a condenser lens system. This method is especially effective for electron holography study of specimens with strong stray fields around them. This is because a reference wave can be obtained from a region far from the specimen, being free from the stray fields. Thus, electron holography analysis with high precision can be carried out, and this system is expected to widen the application of electron holography extensively.
One of the applications of electron holography study of functional materials is magnetic nanostructure analysis of Zn-doped Fe3O4 (FZO). It was reported that shape/size-controlled nanowires obtained from solid solutions based on Fe3O4, which was prepared by atomic force microscope lithography and pulsed laser deposition, show good functionalities, e.g., nonlinear I-V character and large magnetoresistance [3]. Dark field microscope images of FZO obtained by an energy-filtered electron microscope revealed the microstructure consisting of fine antiphase domains (APDs) whose size is less than 100nm. On the other hand, electron holography study combined with Lorentz microscopy clarified small magnetic domains whose size corresponds to that of APDs. The complex magnetic domain structure was interpreted by the change in the local spin order being induced by the modulation of Fe-O-Fe bonding in the antiphase boundary region. Eventually the good functionalities are discussed in terms of the small magnetic domains clarified by electron holography.
[1] D. Shindo and Y. Murakami, J. Phys. D 41, 183002 (2008).
[2] T. Tanigaki, Y. Inada, S. Aizawa, T. Suzuki, H. S. Park, T. Matsuda, A. Taniyama,
D. Shindo, A. Tonomura, Appl. Phys. Lett., 101, 043101 (2012).
[3] K. Goto, T. Kanki, T. Kawai, and H. Tanaka, Nano Lett., 10, 2772 (2010).
3:30 AM - U2.04
Energy-Loss Magnetic Circular Dichroism Measurements of Ferromagnetic Ordering in LaSrCoO3
Ahmet Gulec 1 Robert F Klie 1
1University of Illinois at Chicago Chicago USA
Show AbstractTuning the ferromagnetism of LaCoO3 by doping bulk samples with smaller Sr atoms or straining thin film sample have been previously shown experimentally. In this work, we will use atomic-resolution Z-contrast imaging, annular bright field (ABF) imaging and electron energy-loss spectroscopy (EELS) in the aberration-corrected JEOL JEM-ARM200CF in combination with in-situ cooling experiments to examine the magnetic and spin-state transitions in La(1-x)SrxCoO3 (x=0-0.3) at liquid nitrogen and room temperature. Using energy-loss magnetic circular dichroism method, we confirm the magnetic ordering transition at room temperature with increasing doping concentrations. A magnetic transition is observed in 5% doped sample at liquid temperature. EELS mapping is, also utilized to determine the presence of nanoscale islands of different spin states using both the Co L3/L2 ratio and Oxygen prepeak intensities. Additionally, with increasing doping concentration, a change in crystal structure is measured using ABF imaging, more specifically areas with different distortions of the CoO6 octahedral within the same doping concentrations and change in distortion in different Sr doping concentrations.
Acknowledgment:
The authors acknowledge funding from the National Science Foundation [DMR-0846784] and DMR-0959470 for the acquisition of the UIC JEOL JEM-ARM200CF.
3:45 AM - U2.05
Imaging Magnetization Reversal in Co/Pd-Based Pseudo-Spin-Valves with In-Field Magnetic Force Microscopy
Jun-Yang Chen 1 Tim Ashworth 2 John Michael David Coey 1
1Trinity College Dublin Ireland2NanoScan AG Duebendorf Switzerland
Show AbstractThe use of magnetoresistive thin films based on layers with perpendicular magnetic anisotropy (PMA) is very interesting for many applications such as high density magnetic recording media, MRAM and magnetic logic. Such films can exhibit good thermal stability in nanoscale dimensions and it is easier to define an easy axis than the case for thin films with in-plane anisotropy. Basic magnetic characterization for these thin films includes measuring hysteresis loops by using magnetometry such as vibrating sample magnetometry (VSM) and superconductor quantum interference device (SQUID), or using extraordinary Hall Effect (EHE). However, these techniques can only measure average magnetization behavior. It is hard to image the magnetic domain reversal directly. Magneto-optical Kerr effect (MOKE) microscopy and magnetic force microscopy (MFM) are the two most used tools to image the magnetic domains of these thin films. The lateral resolution for MOKE is limited to micron-size, too low to image magnetic domains on the nanoscale. MFM has high resolution, and can easily image nanoscale magnetic domains. However, most MFM images are taken in zero magnetic field and cannot image magnetic domain structure during magnetization reversal.
In this work, we present non-contact MFM images taken in magnetic fields on Co/Pd-based pseudo spin valves. The multilayer sample has the following composition: Ta 5/Pd 5/(Co 0.2/Pd 1)8/Co 0.4/Cu 2.9/Co 0.4/(Pd 1/Co 0.4)3/Pd 5 (nm). All layers were grown on thermally oxidized Si wafers at 300 K by DC-magnetron sputtering in a shamrock sputtering tool. The initial magnetization curve and hysteresis loop with applied magnetic field perpendicular to the films was first measured by SQUID at 300 K. It clearly shows two step sharp switching, which indicate good PMA of our multilayers. The multilayers with thicker Co layers (0.4 nm) which lie above the Cu spacer layer have smaller coercivity. The non-contact MFM images were taken on a NanoScan hr-MFM in a constant average height mode. The height was regulated using the electrostatic force due to a DC tip-sample bias. The MFM images were taken in increasing magnetic fields, in order to elucidate the domain structure during the magnetization reversal. Starting at 0 mT, MFM images of the as-grown state reveal domains of ~1000 nm in size. These domains shrink with applied field following the initial curve until the top layer is saturated at a field of 42 mT. Taking magnetization ratios from each image, the series of MFM images matches the hysteresis loop as measured by SQUID with an offset of 10 mT which can be accounted for the additional field applied by the tip itself (the images were taken without removing the magnetic field). Once on the hysteresis loop, the domain structure was imaged at the reversal points and nicely matches the SQUID measurements. The ability to image domain reversals at such high resolution demonstrates a complementary tool for pseudo spin-valve optimization.
4:15 AM - U2.06
Direct Imaging of Magnetic Domains in Perpendicular Magnetic Recording Media Using Cs-Corrected Lorentz Transmission Electron Microscopy
Taeho Roy Kim 1 Ai Leen Koh 1 Kumar Srinivasan 2 Gerardo Bertero 2 Robert Sinclair 1
1Stanford University Stanford USA2Western Digital Corporation San Jose USA
Show AbstractPerpendicular magnetic recording (PMR) media is a technology to record data on hard disk drives with large data storage density. PMR media can store any analog information, for example, text, image or sound by converting it to digital data which is composed of either 0 or 1 as a unit of bit. Each bit is then recorded on PMR media by changing its magnetization direction either out of or into the magnetic film. Thus far, the data storage density of PMR media has been improved by decreasing the size of a bit. However, the bit size has now reached its limit and cannot be further scaled down due to superparamagnetism in which bits are no longer stable and stored data is lost. This is due to the thermal energy which can randomly flip magnetization direction of a nanometer scale bit. In order to overcome this superparamagnetism issue, a thorough understanding of the relationship between magnetic and structural properties is required. However, magnetic imaging techniques such as magnetic force microscopy, resonant x-ray holography, or neutron scattering can only image the magnetic information of the material. Herein, we present a novel technique using transmission electron microscopy (TEM) to simultaneously obtain the magnetic information as well as the structural information of the PMR media in nanometer scale.
In this study, we use Cs-corrected Lorentz TEM to directly image the magnetic domains and magnetic grains concurrently. Fresnel Lorentz TEM (FLTEM) and electron holography are both used to observe the magnetic profile of the PMR media recorded with repeating bits less than 100nm in width. In conventional FLTEM, electrons from the gun are deflected by the Lorentz force of the magnetic field perpendicular to the electron path. In defocus, this deflection forms bright and dark contrasts at the location of magnetic domain walls. Interestingly, when magnetization direction of PMR media is parallel to that of electrons from the gun whole domain appears in the image with either bright or dark contrast in large defocus. With electron holography, PMR media is viewed from the side to reveal the magnetic profile extending outside the top surface of the magnetic layer. This technique also utilizes the deflection of the electron beam due to the magnetic field of the specimen which is imaged as interference fringes. This allows the extraction of a phase image. In addition to magnetic domain images of FLTEM and electron holography, the granular structure of the PMR media is imaged in Lorentz TEM in which the objective lens is off. This allows a magnetic-field-free environment for the magnetized specimen inside the TEM while imaging. Hence, correlation between magnetic domains and granular structures is revealed by comparing FLTEM and electron holography with Lorentz TEM images. This direct imaging method of PMR media allows better understanding of the bits in nanometer scale can be widely applied to study magnetic structural relationships in nanometer scale.
4:30 AM - U2.07
Topological Nature of Magnetic Vortices in Patterned Mesoscopic Disks
Javier F Pulecio 1 Dario Arena 2 Shawn Pollard 1 Yimiei Zhu 1
1Brookhaven National Laboratory Upton USA2Brookhaven National Laboratory Upton USA
Show AbstractFunctional magnetic materials have garnered interest due to the potential applications in the emerging field of spintronics. More specifically magnetic vortices have been widely studied due to the quasi-particle/topological nature and are described as having two degrees of freedom, polarity and chirality. While there has been several studies exploring the fascinating behavior of vortices under perturbations using electrical measurements, scanning probe microscopy, and synchrotron based x-ray techniques, transmission electron microscopy provides unparalleled high resolution magnetic and structural information. This allows for a detailed analysis on how the local structure of different materials affects the translation motion of a vortex core under perturbation. Here, we present a direct imaging study of magnetically soft and hard mesoscopic discs of Permalloy and Cobalt under external field perturbations from equilibrium through annihilation and nucleation. The high resolution magnetic imaging of sub 6nm in Lorentz mode affords detail below critical domain wall features of less than 20nm where the soliton-regime breaks down into transverse Bloch walls far from equilibrium. By holding the ferromagnetic system in an external field we can capture the magnetic configuration far from equilibrium states near annihilation and during the nucleation process. Integrating these experiment with micromagnetic simulations we will describe how differently magnetic vortices can behave under perturbations, which is important when attempting to use them in applications such as logic, memories, and antennas.
Work supported by the DOE-BES-MSE,under Contract number DE-AC02-98CH10886 .
4:45 AM - *U2.08
Dipolar Ordering in Self-Assembled Nanoparticle Magnets Revealed by Electron Holography
Marco Beleggia 1 M. Varon 2 T. Kasama 1 V. Puntes 2 R. E. Dunin-Borkowski 3 R. J. Harrison 4 C. Frandsen 1
1Technical University of Denmark Kgs.Lyngby Denmark2Institut Catala' de Nanotecnologia Barcelona Spain3Forschungzentrum Juelich Juelich Germany4University of Cambridge Cambridge United Kingdom
Show AbstractNanoparticle magnets are a novel class of materials, in which a lattice of magnetic ions is replaced by a meta-lattice of magnetic nanoparticles. Inter-particle exchange interactions are absent, while dipolar interactions dominate. As a result, nanoparticle magnets behave differently from conventional magnets and their properties may be controlled and tuned by selecting the spacing and compositions of the constituent nanoparticles. We have studied dipolar interactions in self-assembled Cobalt nanoparticle magnets using off-axis electron holography in the transmission electron microscope. The technique enables the orientation and magnitude of the magnetic moment of each nanoparticle in an array to be determined and correlated with the structural properties of the meta-lattice, including the degree of order of the particles and their size distribution. Our study reveals that dipolar interactions are sufficiently strong to support long-range ferromagnetic order, even when the lattice of nanoparticles is highly disordered. This observation supports the possibility of creating amorphous dipolar magnets, in contrast to the expectation that a disordered dipolar system necessarily implies spin-glass behavior.
Chain-like assemblies of 15 nm ε-Co particles were prepared with an oleic acid coating on a carbon substrate (with no external magnetic field applied). For chains that are wider than 1 particle across, the particles are typically assembled into triangular (close-packed) lattices, although square lattice arrangements are also occasionally seen. We used off-axis electron holography to map the projected magnetic fields of several elongated nanoparticle assemblies non-invasively with a nominal spatial resolution of 6.3 nm. The data set was acquired at remanence after applying an off-plane field of 2 T to the specimen, and reveals the magnetic moment topography of each chain directly.
In order to quantify dipolar ferromagnetic order, we estimated the magnitude and orientation of the magnetic moment of each individual particle. The measurements were correlated with the geometrical arrangements of the particles. For each pair of particles, we measured the spatial separation r between their centers and the angular difference Δtheta; between their moments, from which magnetic and lattice order parameters were determined. Our results show that short-range magnetic order with small domains dominates the initial states, with the local magnetic order (ferromagnetic or antiferromagnetic) often depending on the particle lattice (triangular or square, respectively).
In contrast, at remanence after saturation, overall dipolar ferromagnetic order persists even in case of a non-triangular lattice.
We interpret our results as supporting the existence of amorphous dipolar ferromagnets: i.e., dipolar ferromagnetism in elongated nanoparticle assemblies even in the absence of underlying crystallinity.
5:15 AM - U2.09
Magnetically-Controlled Thermal Conductivity of a Magnetic Tunnel Junction
Brian M. Foley 1 Yishen Cui 2 Jiwei Lu 3 Stuart A. Wolf 3 Patrick E. Hopkins 1
1University of Virginia Charlottesville USA2University of Virginia Charlottesville USA3University of Virginia Charlottesville USA
Show AbstractThermal transport driven by the quantized spins of electrons opens up a new realm of engineering possibilites centered around magnetic materials and processes. In addition, the ability to control these thermal processes via magnetic fields opens the door to controlling thermal properties on the nanoscale. To address this, we report on the magnetically-controlled thermal conductivity of a magnetic tunnel junction (MTJ). We synthesize the magnetic tunnel junction through deposition of a layered 7 nm Ru/3 nm CFA/2.3 nm MgO/5 nm CFA/15 nm InMn/30 nm Ru on a MgO substrate. This structure has shown nearly a factor of 4 change in electrical resistivity in the presence of a magnetic field. We measure the thermal conductivity of the MTJ using time domain thermoreflectance (TDTR); an optical pump-probe technique that has been well established to provide thermal conductivity measurements of thin films. We show that the thermal conductivity of the MTJ stack-structure can be controlled via the field strength and orientation using a rare-earth permanent magnet. The thermal conductivity exhibits a four-fold increase between its off and on states, which is attributed to the change in magnetoresistance of the MTJ due to spin-current channels.
5:30 AM - *U2.10
Exploring the Magnetization Reversal Behavior of Magnetic Nanostructures with Lorentz TEM and MFM
Amanda Petford-Long 1 3 Charudatta Phatak 1 Marc De Graef 2 Seungbum Hong 1 Mengchun Pan 3
1Argonne National Laboratory Lemont USA2Carnegie Mellon University Pittsburgh USA3Northwestern University Evanston USA
Show AbstractWe have used a combination of aberration-corrected Lorentz TEM and magnetic force microscopy (MFM) to carry out in-situ magnetizing experiments and explore the magnetization reversal behavior of a range of magnetic nanostructures. In all cases we are interested in the way in which the magnetic nanostructures interact, either through layering different materials within a single nanostructure or via interactions between separate nanostructures in an array. Examples will be presented for artificial spin ice arrays, which are nanoscale geometrically-engineered systems that display magnetic spin frustration. Square spin-ice lattices with island size 290 × 130 nm were fabricated using electron-beam lithography from 20 nm thick Py films deposited by sputtering on electron-transparent silicon nitride membranes. For closely-spaced lattices the process proceeds by a cascade of islands that reverse one at a time along the lattice diagonal as an applied magnetic field is reduced. As reversal occurs, so the magnetic structure at the nodes at which four islands meet changes. Of particular note are the node structures at either end of the line of reversed islands: these carry a local net magnetization and can be regarded as magnetic monopole defects. Examples will also be presented for patterned NiFe disks (single layer, trilayer and exchange-biased) in which interlayer interactions control both the magnetic structure that forms and also the way in which magnetization reversal occurs.
Work carried out at Argonne National Laboratory, a US DOE Science Lab operated under contract DE-AC02-06CH11357 by UChicago Argonne, LLC. We acknowledge use of the Center for Nanoscale Materials at ANL, and MDG acknowledges DOE-BES for partial support (DE-FG02-01ER45893).
U3: Poster Session
Session Chairs
Monday PM, December 02, 2013
Hynes, Level 1, Hall B
9:00 AM - U3.01
Sub-100 nm Magnetic Wires with Low Edge Roughness Made with a Bilayer Resist Electron Beam Lithography Process
Saima Afroz Siddiqui 1 Jean Anne Currivan 2 1 Sung-Min Ahn 3 Geoffrey Beach 3 Marc Baldo 1 Caroline Ross 3
1Massachusetts Institute of Technology Cambridge USA2Harvard University Cambridge USA3Massachusetts Institute of Technology Cambridge USA
Show AbstractThere is great excitement in developing magnetic nanostructures for energy-efficient non-volatile memory and logic devices which rely on the movement of domain walls in nanostructured thin films. Patterning of thin films into 100 nm or less structures is essential for these applications to have switching energies and data densities competitive to that of field effect transistors. Additionally, low edge roughness is required for reproducibility of the magnetic switching characteristics, since edge roughness in the nanostructures can act as domain wall traps.
We report on patterning sub-100 nm ferromagnetic wires with very low edge roughness using a removable bilayer poly(methyl methacrylate) (PMMA) and hydrogen silsesquioxane (HSQ) resist mask. All patterning was done on silicon substrates with a native oxide. 20 nm-40 nm of polycrystalline Co60Fe20B20 was deposited using UHV DC magnetron sputter deposition. 2% PMMA in Anisole (a positive electron beam resist) and 2% HSQ in methyl isobutyl ketone (a negative electron beam resist) were spun on the CoFeB. The HSQ was exposed using a Raith 150 electron beam lithography tool at 10 kV electron energy and 400 mu;C/cm2 dose. After development, an O2 reactive ion etch (RIE) was used to remove the PMMA except under the HSQ, resulting in a bilayer removable mask. The RIE power and time are specified to the wire width. The CoFeB was ion milled using Ar ion etching at base pressure 2e-7 Torr with 10 mA beam current. After etching the pattern, the PMMA/HSQ mask was removed by NMP along with sonication. Patterned 30 nm, 50 nm, 75 nm and 100 nm wide lines were made using this method. SEM imaging gives a low average edge roughness, less than 4% of the wire width. The magnetic properties were measured using magnetic force microscopy to identify domain structures. This demonstrates the practicality of making sub-100 nm width wires using this method, that liftoff of the resist mask after etching is possible, and that these wire widths have low edge roughness to reduce pinning of domain walls in the magnetic structures.
9:00 AM - U3.02
Strain-Induced Topologically Insulating Phase of Sb2Te: A First-Principles Calculation
Eriko Takasaki 1 Hiroyoshi Momida 2 Tamio Oguchi 1 2
1Osaka University Osaka Japan2Osaka University Osaka Japan
Show AbstractTopological insulators have attracted great interest because of their interesting properties such as possible spin current on edge states, and been considered to be a promising candidate in future applications for spintronic devices. As three-dimensional topological insulators, Bi1-xSbx, Bi2Se3, and Sb2Te3 compounds have been well known. In this study, we theoretically investigate the electronic band structure of Sb2Te, which is known as a semimetal, aiming to search topologically insulating phases controlled by external strain. Our calculations are based on the density functional theory within the local density approximation using the all-electron FLAPW method including the spin-orbit interactions. At first we study the structural stability of layer stacking sequence in Sb2Te. Within the experimentally reported space group P-31m, that includes inversion symmetry, there are four crystallographically possible layer stackings. Calculated results show that the lowest-energy structure of Sb2Te has two Sb2 bilayers between Sb2Te3 quintuple layers, and calculated band structure is semimetallic with the band overlap of about 0.15eV. We calculate the Z2 topological invariant for Sb2Te by checking the parity at time-reversal invariant momenta. Calculated Z2 invariant (1;000) indicates that Sb2Te can be a strong topological insulator if the semimetallic band overlap is lifted. To search a topologically insulating phase for Sb2Te, we study strain effects on the band structure by controlling lattice constants. Our calculation shows that an in-plane strain expanding in the layer direction can induce a band gap, and as result a strain-induced topologically insulating phase for Sb2Te is actually realized. We generally discuss effects of strain and layer structure on the electronic structure of Sb2Te, focusing on role of the spin-orbit interaction.
9:00 AM - U3.03
The Tanglesome Ac Susceptibility and Crystlalline Configurations of Highly-Oriented Colossal Magnetocaloric Compunds Er5Si3.5Ge0.5 Scrutinized by X-Ray Diffraction
Lanlan Sgwendolyn Winifret Lin 1 2 3 Constantine Stassis 2 3 David Vaknin 2 3 Sasha Pecharsky 4 3 Vitalij K. Pecharsky 4 3 Karl A. Gschneidner 4 3 Vasile Ovidiu Garlea 5 2 3 Jerel L. Zarestky 5 2 3 Paul C. Canfield 2 3
1Institute of Physics, Chinese Academy of Science Winston-Salem USA2Iowa State University Ames USA3Ames Laboratory, US-DOE Ames USA4Iowa State University Ames USA5Oak Ridge National Laboratory Oak Ridge USA
Show AbstractThe meticulous ac susceptibility measurement and high-resolution X-ray diffraction indagation commingled with isothermal magnetic entropy measurements from 1 K to 300 K are employed on intermetallic pseudo-binary enormous magnetocaloric lanthanide compounds Er5Si3.5Ge0.5 to adumbrate aboratively its hypostatic magnetic properties, crystalline configurations, phase transform silhouette, and lapidarian optimal mechanical idiosyncrasy, which applied to enamoredly crank out the innocuously environmentalistic, extirpating compressor, high efficient, and oecumenically retrenching-energy magnetic refrigerator applying at aeronautik voyage, sputnik, and industry automatics at our experiments. It is praiseworthy that the real part of ac susceptibility of specimen chi;ac' exhibits a precipitous pinnacle at 28.0 K with the hyperplasia of the temperature when we inflicted an ac magnetic field of 5 Oe and frequency of 1000 Hz onto the magnetic specimen. The depicted inverse chi;ac&’ function curve dependent on the temperature flaunts an approximatively linear modality notwithstanding that there appears a poignant abysm inflexion situating at 27.86 K and the 1/chi;ac' function curve commences to proliferate with the decrease of the temperature below this abyss point. The ace-high fitted coefficients of the linearity equation A and B corresponding to this function curve are 379.95 and 19.1765, respectively. Furthermore, the Endsville fitted magnetic moment of Er atom from our experiment is 9.02 mu;B and it is immaculatedly congruent with the theoretical value of 9.58 mu;B. By the same token, the imaginary part of ac susceptibility chi;ac&’&’ of the magnetic specimen manifests a spiculate aiguille locating at approximate 23 K, despite that its amplitude is just one-tenth of the real part of ac susceptibilitychi;ac&’. Succeedingly we plume-lined the crystalline configuration of magnetic specimen exploiting the advanced X-ray diffraction technique utilizing a Mo target, with the maximum operating voltage and current of 60 kV and 200 mA, respectively, scanning from 8 to 50 degrees at the room temperature. It is worthy to mention that the most vehement aiguille appears at 15.7 degree with the intensity of 1404. The second and third intensive pinnacles situate at 14.7 and 17.4 degrees respectively, and their intensities are 1091 and 932, respectively. Our X-ray diffraction pattern trenchantly reveals that this highly-oriented colossal magnetocaloric lanthanide crystal possesses the monoclinic structure with the Shubnikov space group P1121/a at room temperature. The exquisitely numerically fitted lattice parameters a b, c, and γ from our elaborate X-ray diffraction pattern are achieved as 7.3751#8491;, 14.415 #8491;, 7.5760 #8491;, and 92.947 degree, respectively. Legitimately, It is explicit that at 28 K the magnetic lanthanide compound undergoes the first-order magnetoelastic transition from a high-T monoclinic-paramagnetic-P1121/a to a low-T orthorhombic-ferromagnetic-Pnma configuration.
9:00 AM - U3.04
The Tenebrous Ac and Dc Susceptibility Proclivities of Highly-Oriented Tremendous Magnetocaloric Compounds Dy5Si3.1Ge0.9
Lanlan Sgwendolyn Winifret Lin 1 2 3 Constantine Stassis 2 3 David Vaknin 2 3 Sasha Pecharsky 4 3 Vitalij K. Pecharsky 4 3 Karl A. Gschneidner 4 3 Thomas A. Lograsso 3 4 Deborah Schlagel 3 4 Vasile Ovidiu Garlea 5 2 3 Jerel L. Zarestky 5 2 3 Paul C. Canfield 2 3 Zemin Lin 6
1Institute of Physics, CAS Winston-Salem USA2Iowa State University Ames USA3Ames Laboratory, US-DOE Ames USA4Iowa State University Ames USA5Oak Ridge National Laboratory, US-DOE Oak Ridge USA6No. 5 Middle School Yinchuan China
Show AbstractThe meticulous dc and ac susceptibility measurements from 1 K to 300 K are exploited on intermetallic pseudo-binary enormous magnetocaloric lanthanide compounds Dy5Si3.1Ge0.9 to adumbrate aboratively its hypostatic magnetic properties, crystalline configurations, phase transform silhouette, and optimal mechanical proclivity, which applied to enamoredly crank out the innocuously environmentalistic, extirpating compressor, high efficient, and oecumenically retrenching-energy magnetic refrigerator at our experiments. It is explicit that dc susceptibility chi;dc of specimen with diversified applied magnetic field amplitude H of 0.1, 1, and 10 kOe decrease vehemently with the prolification of H. Praiseworthy is that three curves exhibit one or two dramatically poignant aiguilles situating at the elysium of 1 to 120 K. The maximum piton values situate at 4 and 74, 72, and 22 K, respectively, corresponding to various dc magnetic amplitudes of 0.1, 1, and 10 kOe, respectively. Subsequently we plotted the delineation of inverse dc susceptibility 1/chi;dc dependent on the temperature. Noteworthy is that the curve flaunts an approximately linear relation with a variegate slope at T=73 and 100 K when H=0.1 KOe. The ace-high fitted coefficents of linear equation y = A+Bx are A1 = -120.32, B1 = 2.126, A2 = 1222.34, B2 = 15.137 corresponding to 73 Kle;Tle;100 K and Tge;100 K, respectively. The optimized fitted magnetic moment of Dy atom is 10.11 uB, rippingly congruous with the theoretical value of 10.65 uB. Furthermore, it is trenchant that the inverse dc susceptibility 1/chi;dc at H = 1 KOe displays three segments of linear modality with miscellaneous slopes at T = 5, 79, and 102 K, respectively. The topgallant fitted coefficents of linear equation y = A+Bx are A1= -649.03, B1= 9.233, A2 = -1036.49, B2 = 14.106 corresponding to 79 Kle;Tle;102 K and Tge;102 K, respectively. The ace-high fitted magnetic moment of Dy atom is 10.47 uB, consummately congruous with the theoretical value of 10.65 uB. At H = 1kOe, the 1/chi;dc flaunts a more saponaceous linearity behavior with disparate slopes at T = 82 K. The Endsville fitted coefficents of linear equation y = A+Bx are A1= -993.956, B1=13.905 when Tge;100 K. The best fitted magnetic moment of Dy atom is 10.54 uB, consummately congruous with the theoretical value of 10.65 uB. The exquisite measurement of real part of ac susceptibility chi;ac &’ versus to the temperature exhibits two precipitous pinnacles situating at 81 K and 102.3 K, respectively. Furthermore, the imaginary part of ac susceptibility chi;ac&’&’ versus temperature flaunts one abyss at T = 81 K and an aiguille at T = 102 K, respectively, immaculately consilient with the results of chi;ac &’ instance. Synoptically, the Dy5Si3.1Ge0.9 compound undergoes the first-order magnetoelastic transition from a high-T monoclinic-paramagnetic-P1121/a to a low-T orthorhombic-ferromagnetic-Pnma configurations at T= 102 K and a second magnetic transition occurs at approximately 82 K and 5 K, respectively.
9:00 AM - U3.05
Particulate Cobalt Ferrite - Barium Titanate Nanocomposite Films and Their Properties
Xiaohua Liu 1 2 3 Stephen O'Brien 1 2 3
1The Graduate Center, The City University of New York New York USA2City College of New York, The City University of New York New York USA3The City University of New York New York USA
Show AbstractMagnetic nanoparticles such as transition metal ferrites have been widely used in sensors and magnetic resonance imaging. The large magnetostriction coefficient and high Curie temperature of CoFe2O4 make it excellent candidate for creating ferromagnetic order at the nanoscale, and provide a pathway to fabricate nanocomposites. Barium titanate (BaTiO3), on the other hand, is well known for its excellent dielectric behavior and ferroelectric properties. In this work, a series of particulate, 0-3 type, nanocomposite films composed of ferromagnetic cobalt ferrite and ferroelectric barium titanate nanocrystals are prepared by various methods. The dielectric, ferroelectric and magnetic properties of such films are systematically investigated. Aiming at establishing and enhancing magnetoelectric coupling effect between the two phases, surface modification of the nanoparticles and various film fabrication methods will be performed. The structure and properties of the nanocomposite films will be characterized using XRD, TEM, STEM, SEM, MPMS and LCR meter.
9:00 AM - U3.06
Synthesis and Magnetic Properties of Exchange-Coupled SrFe12O19 - x Wt.%- La0.7Sr0.3MnO3 Nanocomposites via Autocombusiton Method
Jiba Nath Dahal 1 Sanjay Mishra 1 Mohammad Shahabuddin 1
1The University of Memphis Memphis USA
Show AbstractFerrite materials are of enormous technological importance, as these materials are used as recording media for hard disks, magnetic storage, microwave, sensing devices etc. In order to meet the current technological demands, further improvement in the magnetic properties of ferrites is essential. Improvement in magnetic and dielectric properties has been reported when ferrites are used in two component composite system. Pure phase exchange coupled nanocomposites of hard-soft magnetic oxides, (1-x)SrFe12O19 - x. Wt.% La0.7Sr0.3MnO3 were prepared via autocombution method. The structural and morphological characterizations were performed via x-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of the nanocomposites were assessed as a function of soft-phase content in the nanocomposite. XRD analysis shows presence of pure phase components in the nanocomposites. TEM images show presence of needle shape Sr-Ferrite particles in close contact with La0.7Sr0.3MnO3 particles. Room temperature smooth hysteresis loops of the nancomposites clearly demonstrates efficacy of auto-combustion method in producing well exchange-coupled nanocomposites. Furthermore, a linear increase in Mr/Ms with the increase in the soft-phase content up to x=40% was observed. This indicates the presence of enhanced exchange coupling between hard and soft phases of the nanocomposite. The highest Mr/Ms ratio of 0.592 was obtained for nanocomposite containing 40 Wt.% of the soft-phase. Concomitantly enhancement in coercieve field (Hc) was also observed with the increase in the soft-phase content of the nanocomposite reaching to a value of 6.59 kOe which is 80% higher than that of SrFe12O19 (Hc~3.633 kOe) and 1156% higher than that of La0.7Sr0.3MnO3 (Hc ~523 Oe). Thus observed magnetic parameters, Mr/Ms and Hc, of the nanocomposites are far superior to the corresponding values of the individual components of the nanocomposite. The adopted synthesis method is low cost, rapid, and results in pure nanocomposite powder. This simple method seems a promising way to tailor and enhance the magnetic properties oxide based hard-soft magnetic nanocomposites.
9:00 AM - U3.07
Between Quantum and Classical: Evolution of Electron Magnetic Resonance with Growth of a Spin System Size
Brittany Bates 1 James Hilton 2 Natalia Noginova 1 Carl Bonner 1
1Norfolk State University Norfolk USA2Cornell University Ithaca USA
Show AbstractSystems with a single or several coupled electron spins are commonly described with the quantum approach while ferromagnetic domains with millions of coupled spins are classical systems. Large spin clusters and superparamagnetic nanoparticles contain hundreds of coupled electron spins, and are on the boundary between classical and quantum behavior. Electron magnetic resonance (EMR) observed in ultra-fine iron oxide nanoparticles (~ 5 nm size) reveals several features which are typical for paramagnetic spins and absent in macroscopic systems, including multiple quantum transitions observed at Hr/ m, where m = 2, 3, 4 and Hr is the field of the main resonance. In order to better understand the transition from quantum to classical behavior and magnetization dynamics at the nanoscale, we study the evolution of the EMR signal with increase of the particle size in suspensions of magnetite nanoparticles. We also test the effects of nanoparticle mutual arrangements and use of a different kind of magnetic material, such as mumetal and permalloy. The experimental data are compared with numerical simulations based on the quantum and classical approach.
9:00 AM - U3.08
Integration of Self-Assembled CoFe2O4-BiFeO3 Multiferroic Nanocomposite on Sr(Ti,Fe)O3/CeO2/YSZ-Buffered Si Substrate
Dong Hun Kim 1 Nicolas M Aimon 1 Caroline A Ross 1
1MIT Cambridge USA
Show AbstractIn recent years, self-assembled nanocomposite thin films such as BaTiO3-CoFe2O4, BiFeO3-CoFe2O4 (BFO-CFO) and BiFeO3-NiFe2O4 in which a ferrimagnetic spinel phase grows epitaxially as pillars within an immiscible ferroelectric perovskite phase have attracted great interest as new multiferroic materials. However, to date these composites have been exclusively grown on single crystal oxide substrates which limits their utility in microelectronic devices. In this study we describe the integration of a spinel-perovskite epitaxial nanocomposite thin film on a Si substrate by using a Sr(Ti,Fe)O3 (STF)/CeO2 (Ceria)/YSZ (yttrium-stabilized zirconia) thin film as a buffer layer, and the tuning of its magnetic properties. We have found previously that thin films of STF with x = 0.1 ~ 0.5 exhibit room-temperature magnetism and a strong out-of-plane anisotropy when grown epitaxially on ceria/YSZ-buffered (001) Si substrates.[1-2]
From the x-ray diffraction, SEM analysis and by removing the BFO with HCl etching, it was observed that the CFO nano-pillars formed as epitaxial pillars within a BFO matrix on STF thin film. The magnetic hysteresis loop of the nanocomposite on STF thin film shows a sum of the STF thin film hysteresis and that of the CFO pillars. The STF was magnetic even though the BFO-CFO was fabricated in 5 mTorr of oxygen, despite prior evidence that STF films grown in oxygen had very low saturation magnetization.[1] The nanocomposite on STF shows a strong out-of-plane anisotropy as a result of both the shape anisotropy of the pillars and the dominant magnetoelastic anisotropy of the CFO and STF films which are under out-of-plane compression as a result of epitaxy with the BFO matrix and CeO2 buffer layer respectively. Composition modulation of the CFO by layering it with other spinels will also be described. Results from modulated composites grown on STF/ceria/YSZ/Si enable both control of magnetic properties and integration on Si substrate of perovskite and spinel nanocomposites.
References
1. D. H. Kim, L. Bi, P. Jiang, G. F. Dionne, and C. A. Ross, Phys. Rev. B, 84, 014416 (2011).
2. D. H. Kim, L. Bi, N. M. Aimon, P. Jiang, G. F. Dionne, and C. A. Ross, ACS Combinatorial Science, 14, 179 (2012).
9:00 AM - U3.09
Chiral Selectivity of Noncollinear Spin-spiral Magnetic Wave Excitations in Iron Single-Wall Nanotubes
Takahiro Shimada 1 Takayuki Kitamura 1
1Kyoto University Kyoto Japan
Show AbstractThe remarkable interplay of chirality and magnetism in
helical single-wall nanotubes of iron (FeSWNTs) is investigated using fully
unconstrained spin-density-functional calculations. Spin-spiral waves exist
and noncollinear helimagnetism appears only for the specific chirality of
(6,3) and (5,3) FeSWNTs, whereas collinear ferromagnetism persists in
other chiral FeSWNTs as unfolded monolayers, that is, chirality selectively
involves the unusual helimagnetic phase transition (chiral selectivity). The
emergence of quantum helimagnetism plays a variety of significant roles in
(i) the stabilization of the chiral FeSWNTs as a long-lived “magic”
structure in both freestanding and tip-suspended conditions, (ii)
interference with quantum ballistic conductance by interband repulsion,
and (iii) the involvement of chiral conductivity in which electric currents
pass helically through the FeSWNTs. These chiral characteristics are a
novel addition to the intriguing rich diversity of chirality-driven physics and phenomena.
9:00 AM - U3.10
Origin of Ferromagnetism and Magnetoelectric Coupling in Deficient Ferroelectric Nanostructures
Takahiro Shimada 1 Jie Wang 2 1 Takayuki Kitamura 1
1Kyoto University Kyoto Japan2Zhejiang University Hangzhou China
Show AbstractThe possible origin of dilute ferromagnetism and associated magnetoelectric coupling in deficient PbTiO3 are studied using first-principles calculations based on the screened hybrid Hartree-Fock density functional, which has successfully reproduced the band gap of PbTiO3 and the localized/delocalized defect electronic states that predominates vacancy-driven properties. We found oxygen vacancies are likely to form at surfaces and grain boundaries. Such oxygen vacancies clustered at surfaces or grain boundaries are revealed to induce ferromagnetism, whereas oxygen vacancies inside a PbTiO3 single crystal are just non-magnetic. We also demonstrate that magnetism of the oxygen vacancies at surfaces and grain boundaries shows remarkable polarization-dependence: The emerged ferromagnetism undergoes the intriguing rich transitions of the ferromagnetic-antiferromagnetic-nonmagnetic phases depending on the spontaneous polarization directions switched by external electric fields. This signifies that the magnetoelectric effect can exist in deficient PbTiO3, which is, in addition, expected to be a nonlinear coupling due to the rapid phase transition in conjunction with the local polarization switching. Our findings can provide fundamental insights for designing magnetoelectric multiferroic materials in conventional nonmagnetic ferroelectrics.
9:00 AM - U3.11
Studies of Magneto-Dielectric Coupling Properties of(1-x) Pb(Fe0.5Nb0.5)O3 - x Ni0.65Zn0.35Fe2O4 (x=0.2) Composite
Dhiren Kumar Pradhan 1 Satyaprakash Sahoo 1 Sujit K Barik 1 Venkata S Puli 2 Ram S Katiyar 1
1University of Puerto Rico San Juan USA2Tulane University New Orleans USA
Show AbstractMagnetoelectric Multiferroic materials showing coupled magnetic and electrical order parameters through strain have drawn increasing interests due to their unique physical properties and widespread technological applications in magnetic/ferroelectric data storage media, spin based and magnetocapacitive device, magnetic sensors, and nonvolatile memories, etc and also rich in fundamental physics. Here, we report Raman spectroscopic studies, and magneto-dielectric properties of a multiferroic composite ceramics, (1-x) Pb(Fe0.5Nb0.5)O3 - x Ni0.65Zn0.35Fe2O4 ( x =0.2). Pb(Fe0.5Nb0.5)O3 (PFN) is known to be a single phase multiferroic material having good ferroelectric properties, weak magnetic properties and shows very small magnetoelectric coupling around 151 K. Ni0.65Zn0.35Fe2O4 (NZFO) compound shows good magnetic properties around room temperature with good magnetostrictive properties. The X-ray diffraction patterns disclosed the presence of both PFN and NZFO binary phases in theses composites without any secondary phases. Detailed analysis of Raman spectroscopic studies revealed that apart from the presence of the zone centre Raman active modes of the parent compounds, some new peaks are observed in the low (around 30 to 50 cm-1) frequency region. The electric field controlled peak position of the low frequency Raman modes suggests these modes are of magnon in origin. The capacitance and tangent loss in this sample at room temperature decreases considerably with increasing magnetic field whereas the impedance and phase increase systematically with increasing magnetic field. The electric field control of magnetic properties at room temperature in the sample shows a considerable and systematic change of coercive field (Hc), remanent magnetization (Mr) and saturation magnetization (Ms).Our above mentioned results suggest that this composite shows very good magneto-dielectric coupling at room temperature which can be useful for potential multifunctional device applications.
9:00 AM - U3.12
Ferroelectric and Ferromagnetic Properties of Bi3.4La0.6Ti3O12/CoFe2O4 Multilayer Composite Structure
Maharaj Tomar 1 Amanda Charris-Hernandez 1
1University of Puerto Rico Mayaguez USA
Show AbstractThree and four alternate layers of Bi3.4La0.6Ti3O12/CoFe2O4 were synthesized by chemical solution method and deposited by spin coating on Pt (Pt/TiO2/SiO2/Si) substrate. The films were characterized by X-ray diffraction, SEM, dielectric response, leakage current, and ferroelectric and magnetic responses. X-ray diffraction revealed composite-like multilayer structure. SEM showed polycrystalline films grain sizes ~ 100 nm. Both composite structures show exponential decrease in dielectric constant with increasing frequency from 103 Hz to 106 Hz as typical in dielectrics. Low leakage currents (10-7 to 10-6 A) is observed with applied voltage from 5 to 8 V followed by the breakdown and space charge limited current. The composite films were characterized for ferroelectric and ferromagnetic responses. The ferroelectric polarization Pr = 30 µC/cm2 and magnetization Mr = 150 emu/cm3 were observed for the composite film structure. One can compare Pr = 85 µC/cm2 for individual Bi3.4La0.6Ti3O12 and Mr = 230 emu/cm3 for CoFe2O4 film on Pt substrate. Since there is no clustering in film deposition, the observed co-existence of ferromagnetic and ferroelectric coupling is the intrinsic property of the composite
9:00 AM - U3.13
Synthesis and Magnetic Characterization by Ferromagnetic Resonance in Ni/NiO Sub-Nanostructured Particles
Jorge Fernando Angeles Islas 1 Rafael Zamorano Ulloa 2 Jose Gerardo Cabanas Moreno 3 Daniel Ramirez Rosales 2
1Instituto Politamp;#233;cnico Nacional Mamp;#233;xico Mexico2Instituto Politamp;#233;cnico Nacional Mamp;#233;xico Mexico3Instituto Politamp;#233;cnico Nacional Mamp;#233;xico Mexico
Show AbstractThe Ni/NiO nanoparticles studied in this work exhibit sub-nanostructured features, with crystallites with average diameters below 6 nm for Ni and 2 nm for NiO. These nanoparticles were obtained by mechanical alloying followed by Al leaching and passivation. The particles thus obtained have a core-shell structure with a Ni core and a NiO shell. This production process induces porosity in the particles. The powder samples were characterized by XRD, SEM-EDS, TEM, and ferromagnetic resonance (FMR) at 300 K. The FMR experiments provide information about the core and shell effects of magnetic nanoparticles. The Ni-NiO FMR spectrum showed that microwave absorption is associated with two atomic sites that differ structurally and magnetically: one with g core = 3.2855 at H = 2055G and one with g shell = 2.1605 at H = 3125 G. Using the values of g obtained by FMR spectroscopy, it was possible to determine the ratios between the orbital magnetic and spin moments, which were (µL/µS)core = 0.64 and (µL/µS)shell = 0.08. Additionally, the relationship between the orbital magnetic moments, µL-shell = 0.027 µL-core and µs-shell = 0.324 µs-core, were determined, as were the relaxation times (T2) for each region.
9:00 AM - U3.14
Studies of Multiferroic and Magnetoelectric Properties of (Bi0.95Nd0.05)(Fe0.97Mn0.03)O3
Shalini Kumari 1 Nora Ortega 1 Ashok Kumar 2 Ram S Katiyar 1
1University of Puerto Rico San Juan USA2CSIR Delhi India
Show AbstractSingle phase Multiferroic materials have attracted much attention due to their two or more ferroics order parameters (ferroelectric, ferromagnetic, ferroelastic and ferrotoroidic) and their coupling, which are the potential candidates for actuators, switches, magnetic field sensors, and new types of microelectronic memory devices based on magnetic order switching by electric field and vice versa. BiFeO3 (BFO) is a known room temperature multiferroic material which exhibits ferroelectricity and antiferromagnetic ordering at room temperature with high leakage current. To reduce the leakage current and improve electrical, magnetic, and multiferroic properties, we introduced small fraction of Nd and Mn at A and B-site of BFO. X-ray diffraction (XRD) patterns revealed the formation of perovskite (Bi0.95Nd0.05)(Fe0.95Mn0.03)O3 (BNFM) single phase with small (2%) trace of impurity, however Raman spectra suggest pure phase for local nanostructure. Temperature and frequency dependent dielectric studies confirmed the ferroelectric-paraelectric phase transition (Tc) at 630 K with dielectric constant 290 at 1 kHz and relaxor type behavior, this result was confirmed by temperature dependent Raman studies. The complex impedance spectroscopic technique was used to investigate the role of grain and grain boundary effects in the electrical response of the system. Reduced leakage current was obtained, it also showed negative temperature coefficient of resistance (NTCR) behavior with temperature. The above material shows non-saturating magnetic hysteresis till 7 T, with remnant magnetization ~ 0.03 emu/g and coercive field of 0.4 T. Zero field cool (ZFC) and field cool (FC) data at various bias magnetic fields suggest the spins are frustrated. Two competing forces , namely anti/ferromagnetism and superparamagnetism displayed two prominent magnetic phase transitions at low temperatures, the detailed observation will be discussed. High magnetoelectric ME coupling (120 mu;V/cm.Oe) was observed at zero bias magnetic field which reduces with increase in the applied dc magnetic field.
9:00 AM - U3.15
Atomic Scale Design of Y-Type Hexaferrite Thin Films from BaFe4O7, CoFe2O4 and Fe2O3 Targets
Marjan Mohebbi 1 Khabat Ebnabbasi 1 Hessamoddin Izadkhah 1 Carmine Vittoria 1
1Northeastern University Boston USA
Show AbstractTo downsize and integrate magnetic and microwave components it is needed to make thin films of complicated stoichiometries magnetic materials. Here, we report the epitaxial growth of high quality Ba2Co2Fe12O22 thin films at the atomic scale by using alternating target laser ablation method, in which three targets of BaFe4O7, CoFe2O4 and Fe2O3 were used for sequential deposition to localize the ions in the proper crystal structure. Hexagonal Ba2Co2Fe12O22 thin film was grown on sapphire (0001). A KrF excimer laser with a wavelength of 248nm, energy of 400mJ/pulse and repetition rate of 10Hz was used and the distance between the target and the substrate was 5cm. The substrate was heated to 910°C in an oxygen pressure of 300mTorr. The four step deposition routine consisted of 12 laser pulse shots on the Fe2O3, 16 shots on the CoFe2O4, 12 shots on the Fe2O3 and finally 8 shots on BaFe4O7 targets. The growth under the above conditions was approximately 43.8 #8491;/cycle. A post annealing process at 1050C for 30min in air reinforced single phase of the film and improved the magnetic properties. The composition and structure of these films were determined by X-ray diffractometer (XRD) and scanning electron microscope (SEM) which show that the c- axis alignment falls within 0.625° of the normal to the film plane and the films are reasonably well ordered. The magnetic properties were determined by vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR). The saturation magnetization was measured to be 2520G, the magnetic uniaxial anisotropy field was estimated to be 13.2kOe and g=1.52. The magnetic and structural properties are in agreement with bulk parameters.
9:00 AM - U3.16
Multilayer Deposition of Conductive Oxide and Magnetoelectric Ferrite for Microwave Applications
Marjan Mohebbi 1 Khabat Ebnabbasi 1 Carmine Vittoria 1
1Northeastern University Boston USA
Show AbstractMagnetoelectric effect at room temperature can open up new opportunities in miniaturizing microwave devices. Here, we report an M-type magnetoelectric (ME) thin film which is grown on the oxide conductive layer of ITO by pulsed laser deposition. A single target of magnetoelectric material SrCo2Ti2Fe8O19 is prepared by conventional solid state method. The ITO/ SrCo2Ti2Fe8O19 multilayer structure is deposited on a sapphire (0001) substrate using a KrF eximer laser with a wavelength of 248 nm, energy of 400 mJ/pulse and 10 Hz repetition rate. During ITO deposition the substrate was heated up to 400°C in an oxygen atmosphere with pressure of 10mTorr for 10 min, which resulted in 400 nm thickness of ITO layer and immediately after that the substrate temperature raised to 600°C in 200 mTorr of oxygen pressure and the laser was set to impinge on SrCo2Ti2Fe8O19 target for 50 min which resulted in an amorphous film structure. After deposition, the films were annealed in oxygen atmosphere in a tube furnace at 1050°C for 40 min. The ferrite film thickness was measured to be 0.7 µm. These thin films were characterized by vibrating sample magnetometer (VSM), ferromagnetic resonance (FMR), X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). The g-factor was calculated to be 2.66, the saturation magnetization (4πMs) was measured to be 1250 G and the FMR linewidth was 1000 Oe. The magnetoelectric measurements were performed by measuring the changes in magnetization with the application of a DC voltage which shows that the required voltage in order to observe the effect was substantially smaller than the voltage required for bulk materials with same composition. The deduced ME coupling coefficient, α, for SrCo2Ti2Fe8O19 thin film was 6.07×10-9 sm-1.
9:00 AM - U3.17
Cobalt Ferrite Nanocubes for Magnetic Data Storage Application
Liheng Wu 1 Shouheng Sun 1
1Brown University Providence USA
Show AbstractSynthesis and self-assembly of ferromagnetic/ferrimagnetic nanoparticles are important for magnetic data storage application in hard disk drive and magnetic tape. In order to get high density data storage, uniform size and shape of the nano-building blocks are needed. As an important ferrimagnetic material, cobalt ferrite (CoFe2O4) shows very high magnetic anisotropy and coercivity, which is a desirable system for this application. Here I will discuss the solution-based synthesis of uniform cobalt ferrite nanocubes. The magnetic properties can be easily tuned by controlling the size of the cube and composition of Co in cobalt ferrite. Using the self-assembly process, thin film from the uniform nanocubes is fabricated as the magnetic recording medium for the data storage demonstration.
9:00 AM - U3.18
A New Green Chemical Synthesis Method for Direct Synthesis of L10 FePt Nanoparticles from Layered Precursor Fe(H2O)6PtC16
Xiaocao Hu 1 Aldo Capobianchi 2 George C. Hadjipanayis 3
1University of Delaware Newark USA2Istituto di Struttura della Materia. CNR Rome Italy3University of Delaware Newark USA
Show AbstractMagnetically hard FePt nanoparticles have been attractive in the past few years because of their potential application in high density storage media and permanent magnets. In this work, a new green chemical strategy for the direct synthesis of L10 FePt alloy nanoparticles is reported. The starting material is a polycrystalline molecular complex (Fe(H2O)6PtC16), in which Fe and Pt atoms are arranged on alternating planes, like in the L10 structure. The starting compound was milled with crystalline NaCl to form nanocrystals. Then the mixture was annealed under reduction atmosphere (5 % H2 and 95% Ar) at 400°C for 2h with a heating rate of 5°C/min. After the reduction, the mixture was washed with water to remove the NaCl and L10 FePt nanoparticles were obtained without using organic solvents or metal additives. Transmission electron microscopy (TEM) images revealed that this method is able to produce L10 nanoparticles with different average size varying from 13.9 nm to 5.4 nm depending on the (Fe(H2O)6PtC16)/NaCl ratio. The X-Ray Diffraction (XRD) pattern showed the presence of the characteristic peaks of the fct phase. The hysteresis loop, measured both at room temperature and 50 K, shows a high coercivity of 7.6 kOe and 11.2 kOe, respectively as expected for the high anisotropy L10 phase. This method has the following advantages with respect to other wet chemical synthesis methods of L10 FePt nanoparticles; it works at temperatures much lower than those reported in the literature and without metal additives, it does not use organic solvents and it leads to a highly ordered L10 phase.
9:00 AM - U3.19
A Gradiometer Structure Based Rare Earth-Fex (RFex) Magnetoelectric Sensor
Lei Mei 1 Sebastian Rupprecht 2 Qiming Zhang 1 Qing Yang 2
1the Penn State University University Park USA2the Penn State University Hershey USA
Show AbstractIt was widely recognized that the rare earth metals are critical components for many new technologies because of their extraordinary magnetic properties; for example, heavy rare earth elements of lanthanide series, such as Terbium (Tb) and Dysprosium (Dy), exhibit huge magnetic moments of 9.05 mu;B (Bohr magnetrons) and 10mu;B; compared with the conventional values of 0.6 for Ni and 2.2 for Fe. Meanwhile, the curie temperatures of rare earth-iron compounds increase with increasing rare earth concentration: the Curie temperature of amorphous TbFe2 is 388K while Terbium&’s Curie point is about 220K. Below the Curie temperature, the crystal lattice is elongated or compressed in the direction of magnetization if an external magnetic field is applied; asymmetrical lattice spacing is generated subsequently and this strain is determined by the orientation of the magnetic domains. The strain generated will get to its maximum value once all the magnetic moments become aligned with the applied field, thus the saturation magnetostriction has been reached and little strain change will be provided even more. TbFe2 could have a saturation field as high as 23KOe with a magnetostriction of 2520ppm while Tb0.3Dy0.7Fe1.92 has a saturaton field of 3.1KOe with a magnetostriction of 1800ppm (with load), both of these Rare earth-Fex components have been studied by our group and coupled with Piezo ceramic layer to form magnetoelectric sensor which is sensitive with tiny magnetic field while also has a large saturation field compared with commercialized magnetic sensors.
The Rare earth-Fex (TbFe2 or Tb0.3Dy0.7Fe1.92) layer will generate AC modulated strain if an AC magnetic field is applied, the strain will be coupled to the laminated Piezo ceramic layer (Pb(Zr, Ti)O3) and thus an AC electric charge signal will be generated because of the piezoelectricity of Pb(Zr, Ti)O3. A custom made charge amplifier is adopted for signal collection and both magnetoelectric coefficient and sensitivity were studied; the Tb0.3Dy0.7Fe1.92/ Pb(Zr, Ti)O3 sensor system presents an output as high as 84.7 mV under a charge amplifier gain of 2000pC/V while the TbFe2/ Pb(Zr, Ti)O3 sensor system has a high saturation field of 4.3KOe, this is the highest saturation point ever reported for Rare earth-Fex/Piezo coupling sensors.
A gradiometer structure is then formed with two Rare earth-Fex/Piezo coupling sensors with a baseline of 5.30 cm and used for tiny magnetic field gradient measurement. A differential output of 4.83mV is observed under a 0.0135Oe magnetic field gradient with a common mode magnetic AC signal of 1.233Oe: The common mode signal was cancelled while the gradient signal still could be measured. A noise density of 1.9*10-9 Tesla/ rt Hz at 10 Hz is also observed which proves that the gradiometer structure based Rare earth-Fex (RFex) magnetoelectric sensor system could be used for nano Tesla magnetic field gradient measurement within high common mode noise environment.
9:00 AM - U3.21
Relationship between Magnetization Dynamics and Spin, Lattice and Electrons on the Base of RE-TM Alloys
Kazimierz J. Plucinski 1
1Military University of Technology Warsaw Poland
Show AbstractRE-TM alloys, like GdFe100Co alloys are example of the multi-sublattice magnets, where an important role is played by the exchange of angular momentum between non-equivalent sublattices. GdFeCo alloys are ferrimagnets, where the Fe and Gd sublattices are coupled antiferromagnetically, while the Co magnetic moments are parallel to those of iron.
In such systems, the time scale of the magnetization dynamics becomes dependent on the exchange interaction and the balance of the angular momentum between the sublattices [1]
The inequivalency of the magnetic sublattices, on the one hand, and a fine balance of their angular momenta on the other, lead to a very interesting dynamic behavior. This becomes especially obvious at short time scales, when even the exchange coupling could be overmastered by an efficient energy and angular-momentum exchange with the electronic system, leading to a transient ferromagnet-like state at time scales below a few picoseconds. This state is followed by an inter-sublattice relaxation of the angular momentum, leading to a very deterministic switching of the magnetization driven solely by ultrafast laser-induced heating [2].
Because there are certain controversies about interpretation of the experimental results [e.g. 2,3], the following results of the theoretical analysis will be presented:
10 - analysis of the magnetization dynamic based on the three thermodynamic subsystem: the spin system, the electronic system and the lattice. Analysis of the thermodynamic approximation, taking into account short time scale, will be presented; 20 - relaxation rates between these reservoirs, associated with the characteristic energies of the interactions that mediate the coupling between these reservoirs will be analyzed; 30 - influence of the helicity-dependent absorption in the RE-TM magnetic layer, caused by the circular magnetic dichroism on magnetization dynamics, especially laser induced femtomagnetism.
[1] C.D.Stanciu et al., Phys. Rev. B, 73, 220402(R); [2] A. Kirilyuk et al., Rep. Prog. Phys., 76, 026501; [3] D.Popova et al., Phys. Rev., B 84, 214421.
9:00 AM - U3.22
Morphological Dependence of the Intrinsic Magnetism of dsDNA
Chang Hoon Lee 1 Young Wan Kwon 2
1Chosun University Gwangju Republic of Korea2Korea University Seoul Republic of Korea
Show AbstractRecently, we reported the intrinsic DNA magnetism induced by a helical charge transport along the helical π-ways of dsDNAs. In the context, we used electron magnetic resonance (EMR) and superconducting quantum interference device (SQUID) magnetometer in order to detect the magnetic phenomena. In the EMR spectroscopy, we observed the extremely broad EMR peak of g>10 together with the relatively narrow one of g~2. The g>10 and g~2 were assigned as a cyclotron resonance (CR) and Zeeman magnetic transition, respectively. Here, the CR was suggested to be guided by the helical π-way of single dsDNA, which reminiscent of molecular solenoid. If such dsDNA solenoids were coherently interfered through an inductive coupling, and thus extended in the perpendicular direction to be a bundle of dsDNA solenoids in the well ordered regions of fibril structure of A-dsDNAs, a circular loop current might be formed in normal plane of the helical axis, resulting in the s-shaped magnetization (M)-magnetic field (H) curves at the magnetic field ranges of ±5000 G in SQUID measurements.
The scenario mentioned above is only possible when the helical π-ways are preserved well from molecular conformational to morphological levels. This implies that there is no CR peak in an A-dsDNAs with an amorphous phase alone. Therefore, whether the CR is or not is strongly depend on the presence or absence of the well ordered regions.
Here, we prepared various salmon DNAs under different concentrations of Na+ cation. And then, EMR (electron magntic resonance) and SQUID (superconducting quantum interference device) magnetizaton measurements were performed for them at room temperature. Especially, TEM (tunnelling electron microscope) analysis was imployed to characterize DNA's morphology. Interestingly, the DNA's magnetism has one-to-one correspondence to morphological variations.
9:00 AM - U3.23
Ferromagnetism in Compounds Consi