11:45 AM - *EN01.07.01
Power-to-X Technologies—Bioinspired Catalyst and Device Design
Ulf-Peter Apfel1,2,Mathias Smialkowski1,Kai Junge Puring1,Kevinjeorjios Pellumbi2,1,Lucas Hoof2,Daniel Siegmund2
Ruhr University Bochum1,Fraunhofer UMSICHT2
Show Abstract
The efficient reduction of protons and CO2 under mild conditions is a current challenge for modern society. Nature utilizes enzymatic machineries that comprise iron- and nickel- containing active sites to perform these transformations.[1] Recently, we reported on the formidable HER activity of bulk Fe4.5Ni4.5S8 electrodes revealing similar structural and functional properties of the enzymes.[2,3] We herein set out to explore the influence of the Fe : Ni ratio on the performance of the electrocatalyst.[4] Using linear sweep voltammetry, we show that the increase in the Fe or Ni content, respectively, lowers the activity of the bulk electrocatalyst towards HER. Additionally, with increasing Se content in Fe4.5Ni4.5S8-xSex, the HER performance is significantly lowered.[5,6] Thus, specific Fe-Ni interactions seem to be the key for materials reactivity.
In addition, we show that a temperature increase leads to a significant decrease of the overpotential. Furthermore, due to the resemblance of such sulfides with CO2 converting enzymes, we likewise investigated Fe4.5Ni4.5S8 electrodes to perform CO2 reduction.[7] In non-aqueous conditions as well as in supercritical CO2, this material is indeed a potential catalyst affording CO or formic acid, respectively, as main product with high Faradaic yields.
Notably, the reactivity of the pentlandite materials can be further tuned by the reactor environment as well as the electrodes shape which was found to be equally important as the catalyst.
References.
[1] Möller, F. ; Piontek, S. ; Miller, R. G. ; Apfel U.-P. ; Chem. Eur. J. 2018, 24, 1471-1493.
[2] Konkena, B.; junge Puring, K.; Khavryuchenko, O.; Sinev, I. ; Piontek, S.; Muhler, M.; Schuhmann, W.; Apfel, U.-P. ; Nature Commun.2016, 7:12269, DOI: 10.1038/ncomms12269.
[3] Zegkinoglou, I.; Zendegani, A.; Sinev, I.; Kunze, S.; Mistry, H.; Zhao, J.; Hu, M. Y.; Alp, E. E.; Piontek, S.; Smialkowski, M.; Apfel, U.-P.; Hickel, T.; Neugebauer, J.; Roldan Cuenya, B.; J. Am. Chem. Soc. 2017, 139, 14360-14363.
[4] Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; junge Puring, K.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer, D.; Roldan Cuenya, B.; Schuhmann, W.; Apfel, U.-P.; ACS Catalysis 2018, 8, 987-966.
[5] Smialkowski, M.; Siegmund, D.; Pellumbi, K.; Hensgen, L.; Antoni, H.; Muhler, M.; Apfel, U.-P.; Chem. Comm. 2019, 55, 8792-8795.
[6] Pellumbi, K.; Smialkowski, M.; Siegmund, D.; Apfel, U.-P. ; Chem. Eur. J. 2020, 26, 9938 –9944.
[7] Piontek, S.; junge Puring, K.; Siegmund, D.; Smialkowski, M.; Sinev, I.; Roldan Cuenya, B.; Apfel, U.-P.; Chem. Sci. 2019, 10, 1075–1081.