S23 Landing Banner

Symposium EN08-Solid-State Batteries—Devices, Interfaces and Characterization

Solid state batteries (SSBs) based on alkali-metal (Li, Na, Mg, etc) chemistry have attracted much attention from both academia and industry in the last decade. They are considered as promising alternatives for conventional Li-ion batteries for a number of important applications (e.g. electrified transportation and grid storage), owing to the enhanced safety properties and potentially much higher energy density. For instance, SSBs with Li metal anodes have the potential for specific energy >500 Wh/kg, energy density >1500 Wh/L, and potential lower cost of <$100/kWh; SSBs with Na metal anode have the potential for specific capacity> 1100 mAh/g, energy density ~ 400-500 Wh/kg, and power density >5 kW/kg and potential lower cost due to abundant raw material reserves on earth. After a decade of extensive research efforts, many novel high-performance solid electrolyte materials have been discovered and reported. So far, there are significant challenges in structure/interface design, characterization, and manufacturing of SSBs. The anodes and cathodes in solid-state could impart significant stresses at interfaces; and the interplay between stresses, electrochemistry, interfacial and layer structures could lead to morphological evolution of the layers to form interphases and chemo-mechanical degradation during cycling. In addition, fast charging such as in automotive applications could drive the SSBs towards early performance degradation with reduced reliability and safety margins. Moreover, manufacturing challenges also impede the practical applications of SSBs towards to technology commercialization.

This symposium aims to provide an interdisciplinary forum for colleagues from both academia and industry, to address the fundamental and technological aspects and the challenges involved in the development of SSB devices and characterizations. Key focus areas of the symposium include: development of new solid electrode materials, new device fabrication methodologies, fast charging of SSBs, in-operando and in-situ characterization of interfaces and layer morphologies, application of artificial intelligence and machine learning concepts for battery diagnostics and estimating the state of charge (SOC) and the state of health (SOH), and multiscale electrochemical modeling to analyze the performance and safety aspects of SSBs, manufacture methods and life cycle analysis, etc.

Topics will include:

  • Alkali-metal anode (Li, Na, Mg, etc) for SSBs
  • New cathodes and cathode-electrolyte composites for SSBs
  • Electrode/electrolyte interface design and studies;
  • Interfacial stability, stresses, defect formation and failure mechanism
  • Theoretical understanding SSBs (simulation and modeling of materials and battery system, e.g. DFT, MD, continuum and multi-physics modeling, etc.)
  • Advanced processing and manufacturing towards to scale-up mass production
  • Advanced characterizations (in situ, ex situ) to study materials and interface in solid batteries
  • System safety and regulatory requirements for large-scale implementation
  • Impact of fast charging on electrochemical degradation and failure.
  • A tutorial complementing this symposium is tentatively planned.

Invited Speakers (tentative):

  • Stefan Adams (National University of Singapore, Singapore)
  • Peter Bruce (University of Oxford, United Kingdom)
  • Josh Buettner-Garrett (Solid Power, USA)
  • Marca Doeff (Lawrence Berkeley National Laboratory, USA)
  • Kristina Edström (Uppsala University, Sweden)
  • Kelsey Hatzell (Princeton University, USA)
  • Liangbing Hu (University of Maryland, USA)
  • Yoon Seok Jung (Yonsei University, Republic of Korea)
  • Marina Leite (University of California, Davis, USA)
  • Amy Marschilok (Stony Brook University, The State University of New York, USA)
  • David Mitlin (The University of Texas at Austin, USA)
  • Jagjit Nanda (Oak Ridge National Laboratory, USA)
  • Linda F. Nazar (University of Waterloo, Canada)
  • Yue Qi (Brown University, USA)
  • Jeniffer Rupp (Technische Universität München, Germany)
  • Xueliang Sun (University of Western Ontario, Canada)
  • Lianzhou Wang (The University of Queensland, Australia)
  • Thomas Yersak (General Motors, USA)
  • Yang Zhao (University of Western Ontario, Canada)

Symposium Organizers

Hui (Hailey) Wang
University of Louisville
Mechanical Engineering
USA
No Phone for Symposium Organizer Provided , [email protected]

Xiaolin Li
Pacific Northwest National Laboratory
Energy Processes and Materials Division
USA

Cengiz Ozkan
University of California Riverside
Department of Mechanical Engineering
USA

Hongli (Julie) Zhu
Northeastern University
Mechanical and Industrial Engineering
USA

Publishing Alliance

MRS publishes with Springer Nature

 

 

Symposium Support